Self-Explanations: How Students Study and Use Examples in Learning to Solve Problems

MICHENE T.H. CHI
MIIRIAM BASSOK
Learning Research and Development Center
Pittsburgh, PA

MATTHEW W. LEWIS
The Rand Corporation

PETER REIMANN
University of Freiberg

ROBERT GLASER
Learning Research and Development Center
Pittsburgh, PA

The present paper analyzes the self-generated explanations (from talk-aloud protocols) that “Good” and “Poor” students produce while studying worked-out examples of mechanics problems, and their subsequent reliance on examples during problem solving. We find that “Good” students learn with understanding: They generate many explanations which refine and expand the conditions for the action parts of the example solutions, and relate these actions to principles in the text. These self-explanations are guided by accurate monitoring of their own understanding and misunderstanding. Such learning results in example-independent knowledge and in a better understanding of the principles presented in the text. “Poor” students do not generate sufficient self-explanations, monitor their learning inaccurately, and subsequently rely heavily on examples. We then discuss the role of self-explanations in facilitating problem solving, as well as the adequacy of current AI models of explanation-based learning to account for these psychological findings.

Learning is a constructive process in which a student converts words and examples generated by a teacher or presented in a text, into usable skills, such

This research is funded by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-84-K-0542, to the first and the last authors. We are grateful for consultation provided by Frank Boyle and Ted Rees on physics, and insightful comments on the manuscript by Kurt VanLehn.

Correspondence and requests for reprints should be sent to Michene T.H. Chi, Learning Research and Development Center, 3939 O’Hara Street, Pittsburgh, PA 15260.
as solving problems. This process of conversion is essentially a form of constructive self-instruction (Simon, 1979). Although the research on the quality of good teaching (such as that which attempts to identify the characteristics of a good Socratic tutor, Collins & Stevens, 1982), as well as research on the quality of a good text (such as that which manipulates the quality of elaborations, Reder & Anderson, 1980) may be informative, ultimately, learning rests on the learning skills that the students themselves bring to bear as they learn. The goal of this research is to understand the students' contribution to learning. In particular, we examine how students learn via self-explanations.

Some of the best problem-solving research has concentrated on the conversion of already encoded knowledge into smooth, fast, skillful problem solving. This conversion process dominates, for example, Anderson's theory of skill acquisition (Anderson, 1987). In that theory, the process of conversion is achieved by using general weak methods which can convert declarative knowledge into domain-specific procedures via the mechanism of compilation. Thus, in Anderson's theory, it is assumed that the effortful process lies in the conversion of the declarative knowledge into the procedural knowledge, whereas the encoding of the declarative knowledge is taken to be a straightforward storing in unanalyzed form of our experiences in any domain, including instruction (if it is available), models of correct behavior (worked-out examples), successes and failures of our attempts, and so on... This means that we can easily get relevant knowledge into our system... (p. 206).

We concur with the common assumption that learning a skill can be generally viewed as encoding of instruction (in the form of declarative knowledge), followed by proceduralization of some kind. However, our research focuses on the encoding of instruction, because our leading conjecture is that how well individuals learn to solve problems is due largely to the "completeness" with which they have encoded the instruction, rather than the efficiency with which they can convert the encoded instructions into a skill. Anderson (1987) also alluded to the significance of the encoded representation when he suggested that,

weak problem-solving methods like analogy can be much more effective if they operate on a rich representation of the knowledge... (p. 206).

Since our work focuses on the relation between the completeness of the representation of the knowledge that students acquire as they read from a text, and problem solving, we expect that this relationship can be revealed by examining learner differences. We conjecture that differences in students' abilities to solve problems may arise from differences in the ways they understand and learn from text (including the worked-out solution examples). Thus, instead of investigating only the problem-solving difficulties students encounter, we examine, in addition, the difficulties students might have in understanding the worked-out solution examples in the text, prior to solving problems.

Although we view the examination of learner differences as a methodological way by which we can study the relation between the knowledge encoded and the skill of solving problems, we are also interested in learner differences from the point of view of trying to understand the acquisition of expertise (Chi, Glaser, & Farr, 1988). While it takes long periods of study and practice before one can become an expert in any domain, it is clear that extensive practice and study is a necessary but not sufficient condition for becoming an expert. Thus, examining how students differ in the way they learn new materials may also shed light on the processes of skill acquisition that determine whether an individual will or will not achieve expertise.

We chose to focus on students' learning of the worked-out examples, based on theoretical, empirical, as well as instructional reasons. Theoretically, there is some controversy in the literature concerning how generalizations are induced from examples. (See Dieterich & Michalski, 1983, for a review of the AI literature, and Murphy & Medin, 1985, for a review of the psychological literature.) There are two views. Theories based on a similarity-based approach claim that generalizations are developed by inducing a principle from multiple examples. Such a principle would embody the essential features shared by all the examples. On the other hand, theories based on an explanation-based approach (Lewis, 1986; Mitchell, Keller, & Kedar-Cabelli, 1986) claim that generalization can be obtained from a single or a few examples. This can be done by constructing an explanation (or proof) that the example is an instantiation of a previously given principle. Although many theories, including Anderson's ACT*, can only generalize from multiple examples, there is empirical evidence to show that students can often generalize from a single example (Elio & Anderson, 1983; Kieras & Bovair, 1986). However, what is not clear is:

1. How students construct explanations from their domain knowledge in order to prove that the example is an instance of a principle;
2. What is the nature of these explanations;
3. The relationship between the degree of understanding they have of the domain knowledge and the explanations constructed;
4. The nature of their domain understanding after instantiating the example.

That is, explanation-based theories assume that in understanding an example and generalizing from it, a student must already have complete understanding of the domain theory. Whether or not this is true is an open question. Our study should provide evidence on the credibility of the theoretical assumption underlying an explanation-based theory that complete understanding of the domain theory is necessary in order to construct explanations. Thus,
two theoretical issues are involved here. First, can generalization of the principle occur with a few versus multiple examples? Second, is complete understanding of the domain theory necessary in order to construct explanations? Our empirical work should shed some light on how generalizations can emerge from learning a few examples.

There is a dilemma in the empirical and instructional literature as well about learning from examples. Empirical evidence is beginning to accumulate showing the importance of examples in learning. Reder, Charney, and Morgan (1986) for example, found that the most effective manuals for instructing students how to use a personal computer are those which contain examples. LeFevre and Dixon (1986) found that students actually prefer to use the example information and ignore the written instruction when learning a procedural task. Pirolli and Anderson (1985) also found that 18 of their 19 novices relied on analogies to examples in the early stages of learning to program recursion. Besides these laboratory findings, VanLehn (1986) also provided indirect evidence that examples are important in regular classroom learning. He found that 85% of the systematic errors in arithmetic, collected from several thousand students, could be explained as deriving from some type of example-driven learning process.

On the other hand, although both students and instructional materials rely heavily on worked-out examples as an instrument for learning, the laboratory research which directly examined the role of example solutions on problem solving found that students who have studied examples often cannot solve problems that require a very slight deviation from the example solution (Eylon & Helfman, 1982; Reed, Densmter, & Ettinger, 1985; Sweller & Cooper, 1985). The discrepancy between those studies which show that students perform better from text materials that contain examples, and those studies which show that students often fail to generalize from examples, may be caused by the degree to which students understand the examples provided. Generally, in the empirical studies cited, no assessment is made about how well students understood the examples. As Pirolli and Anderson (1985) noted, although most of the students wrote new programs by analogy to example programs, the success depended on how well the students understood why the examples worked.

We propose that students learn and understand an example via the explanations they give while studying it. We hypothesize that such self-explanations are important and necessary, largely because examples typically contain a sequence of unexplicated actions. Simon (1979, p. 92), for example, noted that:

Generally speaking, textbooks are much more explicit in enunciating the laws of mathematics or of nature than in saying anything about when these laws may be useful in solving problems. The actions of the productions needed to solve problems in the domain of the textbooks are laid out systematically, but they are not securely connected with the conditions that should evoke them.

We can provide a concrete example of the inadequacy of worked-out examples by taking one example from the fifth chapter of a physics text (Halliday & Resnick, 1981), as shown in Figure 1. We can see the lack of specification of the explicit conditions under which the actions should be executed. For example, it is not clear in Statement 2 of this example exercise why one should “consider the knot at the junction of the three strings to be the body.” This is a critical piece of information because it implies that at this location (as opposed to the block), the sum of the forces is zero. Such lack of specification of the explicit conditions for actions occurs throughout the example. In Statement 6, how does the student know that F_A, F_B, and F_C are all the forces acting on the body, and that there are no others? Statement 7 is essentially a restatement of Newton's first law\(^1\), but it requires chaining several inferences together, and translating them into an equation (e.g., because the body is at rest, there are no external forces, therefore the sum of the forces on the body must equal to zero). Statement 8 is totally unexplained, why are the axes chosen as such? It is clear that the solution steps within an example are not explicit about the conditions under which the actions apply.

In order to learn with understanding, a student needs to overcome the incompleteness of an example by drawing conclusions and making inferences from the presented information (Wickelgren, 1974). To do so, a student needs to provide explanations (either overtly or covertly) for why a particular action is taken. Only then will the student be able to apply the acquired procedure to non-isomorphic problems that do not match exactly the conditions of the example solution. Thus, we suggest that a good student “understands” an example solution and will succeed in generalizing because he or she makes a conscious effort to ascertain the conditions of application of the solution steps beyond what is explicitly stated. To do so, the student must “explain” how the example instantiates the principle which it exemplifies.

It is difficult to define what “understanding” means in the context of learning from examples. Operationally, our study was designed to assess understanding with three measures:

1. Solutions to isomorphic problems;
2. Solutions for far transfer problems;
3. Explanations generated while studying examples.

The weakest method to detect understanding (the first measure) is to observe how successfully students solve very similar problems, since very similar problems can often be solved by a simple syntactic mapping of the example procedure to the to-be-solved problem. The second method is seeing if students can successfully use the principle involved in the example in a different and more complex problem (far transfer), because such problems prevent

\(^1\) Newton’s first law states: “Every body persists in its state of rest or of uniform motion in a straight line unless it is compelled to change that state by forces impressed on it.”
1. Figure 5-6a shows an object of weight W hung by strings.
2. Consider the knot at the junction of the three strings to be "the body".
3. The body remains at rest under the action of the three forces shown Fig. 5-6b.
4. Suppose we are given the magnitude of one of these forces.
5. How can we find the magnitude of the other forces?
6. F_A, F_B, and F_C are all the forces acting on the body.
7. Since the body is unaccelerated, $F_A + F_B + F_C = 0$.
8. Choosing the x- and y-axes as shown, we can write this vector equation as three scalar equations:
 $9. F_{Ax} + F_{Bx} = 0$,
 $10. F_{Ay} + F_{By} + F_{Cy} = 0$
 $11. F_{Az} = F_{Bz} = F_{Cz} = 0$.
 $12. F_{Ax} = F_{Ay} = 0$.
 $13. F_{Ay} = F_{A} \sin 30^\circ = 0.50F_A$.
 $14. F_{Az} = -F_A \cos 30^\circ = -0.866F_A$.
 $15. F_{Bx} = F_{B} \cos 45^\circ = 0.707F_B$.
 $16. F_{By} = F_{B} \sin 45^\circ = 0.707F_B$.

Figure 1. A strings example.

students from being able to solve them via a syntactic mapping. However, to a certain extent, studying far transfer reveals only that understanding exists and allows one to see what conditions facilitate it.

The method which permits the most direct assessment of understanding of an example is to examine the explicit explanations that students provide while studying it. Explaining is a mechanism of study that allows students to infer and explicate the conditions and consequences of each procedural step in the example, as well as apply the principles and definitions of concepts to justify them. We postulate that explanations can reveal students' understanding by showing whether or not they know:
1. The conditions of application of the actions;
2. The consequences of actions;
3. The relationship of actions to goals;
4. The relationship of goals and actions to natural laws and other principles.

This article focuses primarily on the analyses of the explanations.

In the actual procedure used, we invited students to overtly explain to themselves what they understand, after reading every line of a worked-out example. Often they made no comments at all. However, when they did generate a comment, this technique allowed us to yoke the explanation to the statement line in the example so that we could interpret their protocols more easily.

METHOD

Subjects

Ten students (5 males and 5 females) were selected from responses to a campus advertisement. Eight of them were working towards bachelor's degrees with varying majors. Two of the ten students had additional postgraduate training in psychology. None of the students had taken a college physics course, although all of them (except one) had taken high school physics, with differential performance (reported grade) in that course. We intentionally chose students with a range of abilities in terms of grade-point average and SAT scores, so that we could examine learner differences. Students were paid for their participation.

Procedure and Materials

In this article we focus on how students study three worked-out examples of problems dealing with the application of Newton's laws of motion and on how this initial learning relates to their subsequent problem solving. However, since the relevant chapter demands substantive background subject matter, the study of examples and the problem-solving tasks are embedded within a longitudinal study in which students in our laboratory studied New-
tonian mechanics. Students learned the new material in a way they would normally do when studying on their own, in terms of the amount of time devoted to studying, the rate of self-pacing, and the use of studying habits, such as highlighting significant parts of the text or rereading. The laboratory learning differed from the way students would typically learn on their own in that all the learning took place in the laboratory (without class lectures), and that students gave talk-aloud protocols while studying examples and solving problems. The students spent between 8–29 hours to complete the study, spread over several weeks. Figure 2 presents a diagram summarizing the experimental procedure for the whole study. Basically, the study consisted of two major phases: knowledge acquisition and problem solving.

Knowledge Acquisition
During the first part of the knowledge-acquisition phase, subjects studied the necessary background subject matter, covering the topics of measurement, vectors, and motion in one dimension. These materials are covered in the first three chapters of Halliday and Resnick (1981). The fourth chapter on “Motion in a Plane” was omitted because it did not have a direct bearing on learning Chapter 5, the target chapter on “Particle Dynamics.” Decisions of this kind, as well as designing questions and problems, were made after consultations with physicists.

For each of the three background chapters, students read through and studied the chapter. They were requested to record on a separate sheet of paper any questions which arose during their study. Each chapter also contained a note to stop and get the experimenter in order to give a verbal protocol of one worked-out example. This exercise was meant mainly as practice in giving protocols. When the students believed they were ready to be tested on the material in the chapter, they notified the experimenter, and were then required to produce correct answers to a set of declarative, qualitative and quantitative questions, given in that order. Declarative questions were designed to assess the recall of critical facts from each chapter, for example, “What is the difference between a scalar and a vector?” Some of these questions came from the textbook and some were designed by the experimenters. The qualitative questions were designed to assess reasoning and inferences about the concepts in each of the chapters without reference to quantities, for example, “Can an object have an eastward velocity while experiencing a westward acceleration?” The majority of these problems were taken from the textbook, and several were generated by the experimenters. The quantitative questions assessed procedural skills for quantitative problem solving, for example, “Two bodies begin free fall from rest at the same height, 1.0 sec apart. How long after the first body begins to fall will the two bodies be 10 meters apart?” All of the quantitative problems came from those presented in the text at the end of the chapters.
After solving each problem set, students returned the problems to the experimenter for grading. If no errors were made, they proceeded to the next set of questions. If an error was made, the questions were returned for correction. The incorrect answers were identified and students were referred to those sections of the text which addressed these questions. For incorrect quantitative questions the correct final answer was also provided, analogous to the common practice of looking up the answer in the back of the book. Students then attempted to correct their solutions and resubmitted them for grading. If there were still errors on the second try, students were provided with a worked-out solution for the incorrect answers. Students then studied the worked-out solution, and after it had been removed, were asked to change their answers and/or to reproduce the correct solution from memory. If after these two tries the answer was still incorrect, the experimenter explained the worked-out solution and the student had to reproduce it. Thus, the first three chapters, consisting of the background subject matter, were studied until all the students could correctly solve a set of declarative, qualitative and quantitative problems relevant to each chapter.

During the second part of the knowledge acquisition phase, students studied the target chapter on “Particle Dynamics” (Halliday, & Resnick, Chapter 5, 1981). Studying the target chapter proceeded exactly as for the other chapters, except that students were required to answer correctly the relevant declarative and qualitative questions before studying the three worked-out examples. This was done to assure that the students had acquired the relevant declarative knowledge from the text. (The quantitative problems for Chapter 5 were not solved until the second phase of the study.)

The study of examples was the major focus of the knowledge acquisition phase; students studied three worked-out examples, taken directly from the text. (See Figure 1 for an example of one of the worked-out solutions.) Each example solution represented a “type” of problem. There were three types: strings, inclined plane, and pulley problems. (See Figure 3.) Students talked out loud while studying the examples, and their protocols were taped.

Problem Solving

During the problem-solving phase, students solved two main sets of problems. The first set consisted of 12 “isomorphic problems,” with 4 problems corresponding to each “type” of example (see the shaded areas in the problem-solving phase of Figure 2). These problems were designed to vary in their degree of similarity to the worked-out examples studied in the previous phase. Figure 4 shows one set of isomorphs corresponding to the “strings” example.

The second set consisted of seven “chapter” problems, which were problems taken directly from the end of the target chapter. In terms of our criteria for isomorphism to example problems, these problems can be considered “far transfer” problems. Students solved both sets of problems while giving

![Diagram of examples](image-url)
A block is hanging from three strings. If the tension in string 1 is 18 N, what is the mass of the block?

Similar

The block pictured is hanging from 3 strings. The mass of the block is 10 kg. If the acceleration due to gravity was reduced to 1/2 of its normal value, what would the tension in rope A be?

Changed Gravity

A balloon is being held down by three massless ropes. If the balloon is pulling up with a force of 300 N, what would the tension in rope A be.

Changed Force Direction

Three forces are holding a 800 kg block motionless on a frictionless surface. If force A is 50N, what would force C be?

New Surface

Figure 4. The set of four isomorphs to the strings example.
RESULTS

As indicated, this article will report on the results of the analyses of the protocols taken while students study the example solutions presented in the target chapter, as well as the analysis of how they use the examples in the problem-solving protocols of the isomorphic problems (the two shaded boxes in Figure 2). Individual differences will be reported by contrasting the performance of "Good" and "Poor" students. These two groups were defined post hoc, using their problem-solving successes on the 12 isomorphic and the 7 chapter problems. In scoring the problems, arithmetic slips were not considered as errors and partial solutions were credited proportionally. All problems received the same weight, so that the maximum score for the isomorphic problems was 12 and the maximum score for the chapter problems was 7. (All scoring, identification and classification of protocols were performed by two judges, with a mean interrater reliability across all the analyses ranging from 86%-94%.) One student did so poorly (he neither generated any protocols nor was he able to solve any problems) that he was eliminated from the analyses. This left nine students. We analyzed the results of the top-scoring four and bottom-scoring four students, and omitted the data of the "Middle" student. There were thus four students in each group. The mean success of the Good students was 82% (96% for the isomorphic problems and 68% for the chapter problems). The mean success of the Poor students was 46% (62% for the isomorphic and 30% for the chapter problems).

LEARNING FROM EXAMPLES: STUDYING PROTOCOLS

Amount of Protocols Generated: Units of Analyses

Our first analysis began with a very gross count of the amount of protocol lines students provided while studying the example solutions. A line of protocol is any statement that is not a first reading of an example line, nor is it any conversation carried on with the experimenter that does not refer to the subject matter of the example (i.e., "Do you have a calculator that I can use?"). It is also not a response to the experimenter’s requests to speak

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Transcript of an Example-Protocol and Idea Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idea Statements</td>
<td>Protocol Lines</td>
</tr>
<tr>
<td>Read Line 6:</td>
<td>Fa, Fb, and Fc are all the forces acting on the body. (pause)</td>
</tr>
<tr>
<td>I. Monitoring:</td>
<td>1) Okay.</td>
</tr>
<tr>
<td>Read Line 7.</td>
<td>Since the . . . (pause)</td>
</tr>
<tr>
<td>Experimenter:</td>
<td>(Okay, what are you thinking about?)</td>
</tr>
<tr>
<td>II. Monitoring:</td>
<td>2) I'm trying to think where Forces Fb and Fa</td>
</tr>
<tr>
<td></td>
<td>3) are going to get the thing</td>
</tr>
<tr>
<td>III. Explanation:</td>
<td>4) They'd just be the force, the rest mass of</td>
</tr>
<tr>
<td></td>
<td>5) the thing holding it up would be the force.</td>
</tr>
<tr>
<td>IV. Explanation:</td>
<td>6) It could, well, actually it'd be the force of weight.</td>
</tr>
<tr>
<td></td>
<td>7) Cause being upheld by . . . it's the resistance</td>
</tr>
<tr>
<td></td>
<td>8) to weight W.</td>
</tr>
<tr>
<td>V. Explanation:</td>
<td>9) It would all be equal.</td>
</tr>
<tr>
<td>VI. Explanation:</td>
<td>10) The change in the uh, negative Y will the . . .</td>
</tr>
<tr>
<td></td>
<td>11) The force of negative Y will be equal to</td>
</tr>
<tr>
<td></td>
<td>12) the force in the positive Y.</td>
</tr>
<tr>
<td>VII. Explanation:</td>
<td>13) And they'll all equal out.</td>
</tr>
</tbody>
</table>

TABLE 2	Amount of Protocols Generated While Studying Examples and Solving Problems		
	GOOD	POOR	
Example-Studying Protocols	N of Lines	142	21
Protocols	N of Minutes	13	7.4
Isomorphic Protocols	N of Lines	141	17.5
Problem Solving Protocols	N of Minutes	13.8	14.3

Note. The numbers represent averages per student per example.

1 We simply have not had the opportunity to tackle systematically the voluminous amount of problem-solving protocols.

2 We did have alternative measures of students’ profiles, such as grade-point average, grades for mathematics and science courses, SAT and GPA scores if available, and chosen majors in college, but there were no obvious correlations among any of these measures and the success at problem solving.

louder. Table 1 is a transcript of one student’s protocol (studying the example solution as shown in Figure 1) in which we assigned a line number to each statement. During the transcription, segmentation was made roughly at pause boundaries. Line numbers were assigned to statements corresponding more or less to phrases. This example shows a total of 13 lines. Notice that because we are not necessarily using sentence boundaries as line boundaries, a short comment such as “Okay,” is counted as one line, since it is inserted between different activities, such as reading.

Table 2 (top panel) shows the average number of lines generated per example by the Good and Poor students, as well as the average amount of time it took them to study an example. These differences are contrasted with the average number of protocol lines generated and the amount of time taken to
solve an isomorphic problem (bottom panel). The Good students generated a considerably greater number of protocol lines than the Poor students (142 lines vs. 21 lines, \(t(6) = 1.97, p < .05 \)). These protocol-generating activities necessarily led the Good students to spend more time on each example as well (13 min vs. 7.4 min, \(t(6) = 2.16, p < .05 \)).

We rule out the possibility that Good students are simply more articulate or fluent, thus producing more protocol statements, since, in contrast, the number of lines they generated while solving problems is approximately the same as the Poor students (141 vs. 122 lines per problem, see Table 2, bottom panel). This suggests that the students generated as many lines of protocols as they deemed necessary in order to learn the example. Likewise, the fact that the Good students took more time studying each example solution than the Poor students (13 min vs. 7.4 min) also reflects their choice to spend more time on each example, rather than a tendency to dwell unnecessarily on the examples, since the amount of time they spent solving each isomorphic problem is about the same as the time spent by the Poor students (13.8 min vs. 14.3 min).

The assumption we make, that protocol statements are generated if some knowledge or inference is being processed or constructed in memory, is no different than assumptions made with reference to other types of dependent measures. For example, the customary assumption underlying verbal protocol analyses is that the problem solver is saying what he is thinking about or dumping the content of his or her working memory (Newell & Simon, 1972). Thus, longer protocols simply refer to a greater degree of processing. Similarly, in research using eye movement protocols, the assumption is that the student is processing the location at which he or she is fixating (Just & Carpenter, 1976). Thus, longer fixations imply that the student is spending more time processing that location. Therefore, we view the greater amount of protocols produced by the Good students as a natural consequence of wanting to understand the solution example better, rather than the possibility that they are more articulate and fluent.

It might be claimed that the reason that Good students learned more is just that they spent more time studying. However, this is not a very deep explanation, but merely a restatement of the correlation. The important question is what the Good students did while they were studying. As will be seen shortly, there are such large qualitative differences in what students did while studying examples that the simple, shallow, explanation—that studying twice as long makes one learn twice as much—is quite implausible because it cannot explain the other differences in students’ learning behaviors.

Although we claim that longer protocols do not necessarily imply verbosity, using lines as a unit of analysis does not seem adequate for capturing what is going on. That is, an analysis at the level of lines is too fine-grained to characterize the nature of these comments. Instead many lines seem to refer to a single idea, and thus we further collapsed the lines into units expressing a single idea. For example, the 13 protocol lines in Table 1 have been recoded into 7 “ideas” (Statements I–VII). The boundaries were placed on the basis of different ideas, which are often separated by pauses, or different sorts of activities including reading or experimenters’ interjections.

Using this sort of parsing, we see in Table 2 (middle panel) that Good students’ protocols have been reduced from 142 lines to 51.9 ideas and Poor students’ protocols remained roughly the same (that is, 17.5 ideas vs. 21 lines). Thus, in a sense we are penalizing the Good students for being articulate. What the data actually show is that the Good students often dwell quite a bit on a single idea either because they realize that they do not understand it, or they want to provide a more complete explanation (see next sections), or the ideas are just harder to explain succinctly. Even with this unit of analysis, the Good students generate a significantly greater number of ideas than the Poor students (51.9 vs. 18, \(t(6) = 1.94, p < .05 \)). Henceforth, all analyses will be based on the number of idea statements.

Kinds of Ideas Generated
An idea statement can be classified into three types. (See Figure 5 for a breakdown of all the classifications to be discussed.) We reserve the term explanation to refer only to those ideas which say something substantive about the physics discussed in the example statement. The following comment would be considered an explanation:

Ummm, this would make sense, because since they’re connected by a string that doesn’t stretch.

or

If the string’s going to be stretched, the earth’s going to be moved, and the surface of the incline is going to be depressed.

Other examples can be seen in Table 1.

An idea is considered to be a monitoring statement if it refers to states of comprehension. For example, remarks such as:

I can see now how they did it

or

I was having trouble with \(F \cdot \text{mgsin} \theta = 0 \)

would be considered monitoring statements.

A third category includes several other types of ideas, mostly paraphrasing, mathematical elaborations, and metastrategic statements. Paraphrasing would be comments that either restate what the example line said, or put into words what is shown pictorially. For example, a student who read the example line:

\(F_a, F_b, \text{ and } F_c \text{ are all the forces acting on the body.}
and then remarked that

There are no more forces

would be paraphrasing. Paraphrasing into words what was depicted in the diagram (such as that shown in Figure 1) would be the remark:

Okay, so three forces are on the two strings, and from the string going down to the object.

A mathematical elaboration would be a statement such as:

If this is the sine of 45 degrees, then this is the cosine of 45 degrees.

And a metastrategic statement concerns what the students are doing or planning to do, such as:

I'm going to look at the diagram. I'm going to reread it. This is something to remember.

Table 3 shows the distribution of the three categories of idea statements for the Good and Poor students. Looking at Table 3, one can see that although the Good students produced a significantly greater total number of idea statements (51.9) than the Poor students (17.5), a closer examination of each of the categories suggests that the difference is not a straightforward quantitative one. Below, we analyze the differences in the structure and content of the explanations, as well as differences in the monitoring statements.

Analyses of Explanations

Of the statements produced by the Good students, 15.3 are explanations relating to the physics content as compared to 2.8 for the Poor students. Not only is the absolute number of explanations generated by the Good students significantly greater than the number generated by Poor students ($t(6) = 4.75, p < .005$), but proportionately, the Good students generated twice as many explanations (29%) as the Poor students (16%). Also, the correlation
between the number of physics explanations and the subsequent success in solving the isomorphic problems is very high ($r = .81, p < .02$). Thus it seems that these explanations play an important role in learning from examples.

Structure of the Explanations. One way to analyze the explanations students provide upon studying an example is to analyze the structure of their explanations, by which we mean the form or purpose of what they say. Since our conjecture in this research was that students often fail to understand example solutions because the example provides neither a clear specification for why each procedural step is taken nor an explication of the consequences of each step, this would imply that if students do understand an example solution well, they themselves must explicate the conditions and consequences of each solution step. Hence, we attempted to capture this characterization in the choice of the analysis categories. Analyzing the physics explanation statements, we could classify them into four major categories.

1. **Refine or expand the conditions of an action.** For example, in response to Line 18 of the inclined plane example, which stated that:

 It is convenient to choose the x-axis of our reference frame to be along the incline and the y-axis to be normal to the incline.

 Student S110 explained the conditions of such a choice by saying:

 and it is very, umm, wise to choose a reference frame that’s parallel to the incline, parallel and normal to the incline, because that way, you’ll only have to split up mg, the other forces are already, component vectors for you.

2. **Explicit or infer additional consequences of an action.** In response to the same line in the inclined plane example, student SP2 said:

 So we can save 1 force...we save the F force. We save it so that I don’t have to calculate it by, with angles...So we can save two forces. Partitioning of two forces.

3. **Impose a goal or purpose for an action.** In response to the same Line 18, again, S110 said:

 Basically it looks like they are going to split up these three forces into their respective components.

4. **Give meaning to a set of quantitative expressions.** In response to Lines 13–16 of Figure 1, which simply states two equations, student S110 stated:

 Umm, and looking along, they’ve done the same thing for FsubB. They’ve separated it into its components, into its component vectors, and they are basically able to figure out umm, the tension in each of the strings and how much W weighs providing that...

Another student (SP1) responded to the same lines similarly by saying:

 Now they are going to do the same thing with it to the Y.

These latter two quotes show that not only can students understand, in a sense, the meaning and purpose of the quantitative expressions (which is a procedure for decomposing the forces), but they are also basically providing a goal for the set of actions. They refer to the goal of the equations as the “same thing”.

Our attempt to characterize the structure of these explanations shows that they basically take the form of inferring additional implications of each action. What is not apparent from such “local” analyses is that many of the explanations attempt to link several actions together in trying to make sense of whether one example line follows from the line above (except for what is captured by the “Impose a Goal” or “Give Meaning to Quantitative Expressions” categories).

Content of the Explanations. So far, we have just given a characterization of the structure of the explanation statements. The explanations basically justify actions stated in the text: They refine or expand the conditions of an action, explicate the consequences of an action, provide a goal for a set of actions, and explain the meaning of a set of quantitative expressions. However, there is an important difference in the Good and Poor students’ explanations that is not easily captured by assessing the structure of what they say. This difference requires an analysis of the content of the explanations.

We can first give a descriptive analysis of the difference between the Good and Poor students’ explanations by contrasting what they generated after reading the equation from the Pulley example:

 \[T - mg = m_1 a \]

A Poor student (S109) comments:

 Okay, cause the acceleration is due to gravity.

This comment, at best, is an incomplete statement. It does not capture the interrelation between the force of tension and the force due to gravity. On the other hand, a Good student (SP1), in response to the same example line remarks:

 Okay, so it’s basically a way of adding them together and seeing if there is anything left over. And if there is anything left over, it equals the force: mass times acceleration.

Such a comment is not only more complete, but it shows that the Good student is trying to understand the example by relating the equation to explanations and principles stated in the text. This is typical of Good students’ explanations.
Our descriptive analyses of the nature and content of the explanations so far indicate that the Good students seem to generate explanations which relate to the principles stated in the text, as well as relating the consecutive example statements to each other (as when they impose a goal on a set of actions, or give meaning to a set of quantitative expressions). We can further capture the degree to which students’ explanations reflect the principles learned from the text by judging the extent to which explanations can be said to be guided by these principles. For example, the following response to Line 3 of Figure 1:

So that means that they have to cancel out, only the body wouldn’t be at rest.

could be judged to be guided by Newton’s first law that if there is no motion, then the sum of the forces must be zero. Thus, to increase the rigor of our analyses, we further restricted our analyses to only those explanations that are derived or inferred from Newton’s three laws. About a third of the Good students’ explanations (4.75 out of 15.3 statements) could be derived from or referred to Newton’s laws, and about a fourth of the Poor students’ explanations (0.7 out of 2.8 statements) related to any of Newton’s laws.

One might think that more of the Good students’ explanations are derivable from the principles in the text than the Poor students’ explanations because the Good students have understood the principles better prior to studying the examples. This interpretation can be tentatively ruled out by examining the content of the students’ responses to the declarative questions administered prior to the studying of the example-exercises. Recall that the students had to be able to answer a set of declarative questions after reading the text part of Chapter 5 to the satisfaction of the experimenters before they could proceed to the example-studying phase of the study. One part of this declarative test asks the students to state in their own words Newton’s three laws. We analyzed those responses using the same analysis used in Chi, Glaser and Rees’ (1982) Study Six. In this analysis, each of Newton’s laws was decomposed into several subcomponents. For example, Newton’s second law, \(F = ma \), has been decomposed into four subcomponents:

1. Applies to one body;
2. Involves all forces on the body;
3. Net force is the vector sum of all the forces;
4. \(F = ma \), or the magnitude of \(F \) is \(ma \), and the direction of \(a \) is the same as \(F \).

Using these components as a scoring criterion, it can be seen in Table 4 (the first row) that for the answers to the declarative questions, both the Good and the Poor students articulated 5.5 components (out of a total of 12 possible components for the three laws) from the text. Thus, before studying the examples, the two groups did not differ in the amount of declarative knowledge that they have encoded, at least in so far as the way we have assessed this knowledge. (Alternative interpretations will be discussed later.) In order to compare the students’ initial understanding of the three laws with their subsequent understanding as manifested in the explanations, we used the same component analysis to code those explanations which were previously judged to be derivable from Newton’s three laws (4.75 for the Good students and 0.7 for the Poor students). Within these subsets of explanations, the Good students stated 5.5 components of the three laws whereas the Poor students only stated 1.25 components (t(6) = 2.14, p < .05). (See middle row of Table 4.)

What is most remarkable is that for the Good students, 3 out of the 5.5 components stated in the explanations are distinct from those previously mentioned in the answers to declarative questions. In other words, while example-studying, the Good students gained or accessed 3 additional components of the three laws. For example, three out of four Good students inferred or understood the second component of the second law, that the force \(F \) “involves all the forces on the body.” This particular component of the second law was not mentioned initially by any of the Good students in the answers to the declarative questions. However, self-explanations produced while studying the examples obviously instantiated this point. This suggests that the Good students can learn from the examples, perhaps because the examples instantiate components of the laws that were not particularly salient from reading their declarative description in the text. Perhaps also, this is why the Good students feel so compelled to “explain” while studying, since they are learning and encoding new knowledge.

The Poor students, in contrast, hardly gained any additional components to what they already knew (0.25 new components, see Table 4, 3rd row). The difference in the number of new components gained is significant between the Good and the Poor students (t(6) = 3.67, p < .01). None of the Poor students articulated, for example, the second component of Newton’s second law, in either their explanations or their declarative answers. Thus, not only did the Poor students not gain much new knowledge to what they already knew about the three laws, but further, they did not even access what they did know (i.e., they only used 1.25 components while self-explaining when they could articulate 5.5 components in the declarative test).
Summary. Our analyses of explanations show that the Good students produce a significantly greater number of explanations, in both absolute number and in proportionate terms. These explanations consist of inferences about the conditions, the consequences, the goals, and the meaning of various mathematical actions described in the examples. Furthermore, a large number of the explanations that the Good students provided were judged to be guided by the principles, concepts, and definitions introduced in the text.

We found that both the Good and the Poor students had basically the same initial understanding of Newton's three laws, assessed in terms of the number of components of these laws that they cited in their answers to declarative questions. (According to Greeno & Riley, 1987, explicit verbalization is the strictest criterion for assessing understanding of a principle.) The self-explanations provided by the Good students while studying the examples seemed to have made their understanding of the principles more complete in that they used three additional components of the three laws (reaching a total of 8.5 out of 12 components). For example, while explaining, the Good students articulated 3 out of the 4 components of Newton's second law (the only component missing is the first one), whereas prior to that, they only mentioned 1 of the 4 components (the last one). In contrast, since the Poor students did not provide many explanations, they hardly articulated any additional components of the laws while studying the examples (reaching a total of 5.75 out of 12 components). For example, for the second law, no new component was added to what they already knew (which was only the fourth component of the second law). Hence, we would like to suggest from such a result that, the Good students, in generating explanations while studying, gained additional understanding of the principles discussed in the text part of the chapter; Poor students, by not explaining, had an understanding of the second law after studying the example which was just as incomplete as it was before studying the example. In fact, they did not use as many components in their explanations as they could have from their initial understanding. (Again, assuming that explicit verbalization is a measure of understanding.)

There is an alternative interpretation that we cannot rule out with the present set of data. It is conceivable that the Good students had gained greater understanding of the three laws from the text prior to studying the examples than the Poor students, but somehow they did not articulate or access them while giving answers to the declarative questions. The examples may have somehow triggered and allowed them to access that knowledge. This interpretation would question the assumption that understanding of principles can be accurately assessed by a declarative recitation of them, since, by definition, an understanding of a principle consists of procedural instantiations. Thus, a declarative recitation of the principles is perhaps not a sufficient criterion for assessing understanding. One could either recite the principles perfectly and not understand them procedurally, or one could recite them inadequately and yet understand them to a greater extent procedurally. Although we are more inclined to believe that the former is true but not the latter, this interpretation of our data cannot, however, be ruled out.

Assuming that all the students have encoded the same number of components of the three laws initially, this suggests that the students did acquire the same amount of relevant knowledge from the text part of the chapter. In particular, the Good students did not seem to have a better understanding of Newton's laws prior to studying the examples. This suggests that by the time students attempt to solve problems, their representations of the principles and other declarative knowledge introduced in the text will differ depending on the degree to which their understanding of the principles is enhanced during their studying of examples (regardless of whether this enhancement is due to accessing of new components, or of actually learning new components from self-explanations). Such an interpretation is consistent with findings showing that students do prefer text materials that contain examples (LeFevre & Dixon, 1986; Reder et al., 1986). Thus, even though it may be assumed that able students (both the Good and Poor ones) can begin problem solving by applying general weak methods, as Anderson (1987) has proposed (the process of proceduralization), Good students may achieve greater success in solving problems since the instantiation of a weak method depends on the representation of their declarative knowledge, which is more complete. Thus, example-studying is a critical phase of skill acquisition.

It is interesting to compare these findings to our expert-novice results, in which the experts cited many more components in their summaries of Newton's three laws than the novices (Chi et al., 1982). In contrast, before studying the examples, our Good and Poor students did not differ in their understanding, at least as assessed by a declarative recitation. Both groups had relatively poor understanding. It appears that as a result of differential learning from examples, the two groups developed knowledge differences which are analogous to differences we found between experts and novices. This suggests that experts became that way not because they were better at the initial encoding of declarative knowledge, but that their greater understanding was probably gained from the way they studied examples and solved problems.

While we do not understand the mechanism underlying self-explanations at this point, it is clear that self-explanations not only construct better problem-solving procedures, but they also help students to understand the underlying principles more completely. (More speculation about the mechanisms of self-explanations will be presented in the discussion.)

Monitoring Statements
So far, we have found that the Good students tend to explain an example to themselves (more so than the Poor students), and that these explanations
TABLE 5

<table>
<thead>
<tr>
<th>Monitoring Statements</th>
<th>GOOD</th>
<th>POOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proportion (%)</td>
<td>Frequency</td>
</tr>
<tr>
<td>Comprehension Failure</td>
<td>46</td>
<td>9.3</td>
</tr>
<tr>
<td>Understanding</td>
<td>54</td>
<td>10.8</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>20.1</td>
</tr>
</tbody>
</table>

* An average number of statements per student, per example.

are manifestations of learning that the Good students are undertaking while studying. The Poor students are not learning, at least not learning the components of the three laws, while studying the examples. One possibility for why the Poor students are not explaining is that they may not realize that they do not understand the material; another possibility is that they may actually think that they do understand the material, thus they need not explain. To see if these conjectures are viable, we have examined those protocol statements that have been categorized as monitoring statements. As we noted earlier in Table 3, around 40% of the protocol statements are of this kind (39% for the Good students and 42% for the Poor students).

Monitoring statements can be broken down into those which indicate that the student understood what was presented in the example line (such as “Okay,” or “I can see now how they did it”), and those which indicate that the student failed to understand (usually questions raised about the example line, such as “Why is \(mgsin\theta \) negative?”). By examining the proportion of each type of monitoring statements, (see Table 5), it seems that the Poor students detect comprehension failures less frequently than the Good students. Thus, the Poor students, within each example, generated an average of only 1.1 statements indicating that they failed to comprehend a line; whereas the Good students generated an average of 9.3 such comments (\(t(6) = 2.32, p < .05 \)). Common sense would have predicted that the Poor students should have detected comprehension failures more frequently, rather than less frequently, since they were less successful at solving problems than the Good students.

Why is it important to be able to detect comprehension failures? We surmise that it is important to be able to detect comprehension failures in order for students to know that they ought to do something to try to understand. One way to assess this is to look at the frequency with which a detection of comprehension failure is followed by explanations. Indeed, for both the Good and Poor students, detections of comprehension failures do initiate explanations, although more often for the Good than for the Poor students, both proportionately and on an absolute basis. Eighty-five percent (or 8.0 out of 9.3 statements) of the Good students’ and 60% (or 0.6 out of 1.1 statements) of the Poor students’ detections of comprehension failure were followed by explanations, \(F(2,12) = 12.5, p < .01 \). These results suggest that one crucial advantage of the Good students is in their ability to identify spontaneously the loci of their misunderstandings, which in turn initiates the necessary inferencing process.

Not only do the Poor students often fail to realize that they do not understand, but on the few occasions when they do think they do not understand, these detections occur strictly at loci of quantitative expressions, whereas only half of the Good students’ detections of comprehension failure arise from such loci. The other half resides in places where we believe important physics principles and concepts are being explained. Our favorite example is the second line in Figure 1:

Consider the knot at the junction of the three strings to be the body.

At this location, three of the four Good students indicated comprehension failure, whereas none of the Poor students did. (This is a critical piece of information because it tells the student that the knot and not the mass of the block, should be the center of the reference frame at which all the forces have to sum to zero.)

There is also a qualitative difference in the kind of questions that detection of comprehension failure raises. For example, Poor students, when detecting their failure to comprehend, often state their lack of understanding in a general way, such as:

* Well, what should you do here?*

or restate the equation which they do not understand, for example:

* I was having trouble with \(F-mgsin\theta = 0 \).*

On the other hand, the questions that the Good students raise are specific inquiries about the physical situation described in the example, such as,

* I’m wondering whether there would be acceleration due to gravity?*

or

* Why the force has to change?*

This difference is similar to the distinction Kearsley (1976) made between open versus close questions. Open questions indicate a broad lack of knowledge whereas close questions reflect having greater relevant knowledge. Thus, it appears that the specific questions that the Good students pose can be answered by engaging in self-explanations, since the processes of self-explanations are essentially the processes of inferring the conditions and consequences of actions, inducing goals, and so on. On the other hand, the
general lack of understanding as posed by the questions of the Poor students cannot be resolved by engaging in self-explanations.

In summary, the analyses of the monitoring statements essentially show that the Good students realize that they do not understand more often than the Poor students. The Poor students, in fact, seldom detect comprehension failures. When they do, it always occurs at loci of quantitative expressions. This indicates that they know when they cannot follow mathematical manipulations, but they cannot monitor whether or not they have conceptual understanding. The ability to detect comprehension failures is important because such states (of incomprehension) tend to initiate explanations. When the Poor students do detect comprehension failures, their sense of it is vague and general, whereas Good students ask very specific questions about what they don't understand. These specific questions can potentially be resolved by engaging in self-explanation. In short, the Poor students seem oblivious to the fact that they do not understand, in part because they only have a superficial understanding of what they read. In the next section, we will discuss how these different patterns of learning dictate how examples are used during problem solving.

PROBLEM-SOLVING PROTOCOLS AND REFERENCES TO EXAMPLES

We now turn to our analyses of students' problem-solving protocols with reference to the use of examples for the 12 isomorphic problems (4 per each of the three example problems in the text). A global analysis is to examine the extent to which Good and Poor problem solvers use examples. References to examples were identified in three ways: (a) the student could make explicit remarks such as, "Now, I'm going to look at the example."; (b) the student could be looking at the example, rereading some of the example lines; and (c) the student could respond that she or he is looking at the example if the experimenter probed and asked what she/he was doing.

Both the Good and Poor students use examples frequently. The Good students referred to the examples while solving 9 out of the 12 isomorphic problems, and the Poor students referred to examples in solving 10 out of the 12 problems. Thus, at this global level, of whether or not students reference examples, our finding is consistent with that of Piroli and Anderson (1985), as well as with the common intuition that students do refer to examples in learning to solve problems. However, a more detailed analysis shows that they reference examples in a very different way.

Reference to Example Episodes

At a more detailed level, we analyzed the number of "episodes" in which students refer to examples within each problem-solving protocol. Only the first set of three isomorphic problems (one per example) was used for this analysis. We analyzed only the first set because we were interested in the students’ initial use and reliance upon the studied example; subsequent problem solving could have benefitted from using procedures that were learned while solving the first set.

We can classify example usage into three categories:

1. **Reading**
2. **Copy and Map**
3. **Compare and Check**

A reading episode is simply when students reread verbatim one or more example lines. A reading episode is marked by a reference to the example, reading some consecutive lines (with or without comments inserted), and terminating when the student goes back to solving the problem. Copy and Map episodes are instances where the student copies from the example an equation, labels from the diagram, the free-body diagram itself, or the axes. The following statement for student S105 would be coded as mapping:

Okay, so choosing the axes from the diagram, it would be better to tilt it 30 degrees.

Compare and Check episodes are those in which the student turned to the example to check a specific subprocedure, or a result, either before or after an independent attempt on the solution. For example, one of the students (SP1) forgot what the units for weight were after resolving two vectors into four components and referred back to the example with the comment:

In the example problem, how did they refer to weight?

Table 6 shows the mean number of episodes of each kind for the problem-solving protocols of the first set of isomorphic problems. Although we showed earlier that at a global level, both the Good and Poor students use examples equally often, this more detailed analysis shows that within a prob-

<table>
<thead>
<tr>
<th>TABLE 6 Use of Example during Problem Solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOOD</td>
</tr>
<tr>
<td>N of Episodes Per Problem:</td>
</tr>
<tr>
<td>Read:</td>
</tr>
<tr>
<td>Copy & Map:</td>
</tr>
<tr>
<td>Compare & Check:</td>
</tr>
<tr>
<td>Total:</td>
</tr>
<tr>
<td>Within Each Reading Episode:</td>
</tr>
<tr>
<td>N of Lines Read:</td>
</tr>
<tr>
<td>Locs of Entry:</td>
</tr>
</tbody>
</table>

Note. The numbers represent averages per student, per problem.
The contrast in our interpretation can also be substantiated by the goals the students state while referring to the examples. Good students usually enter examples with a very specific goal. One student (S101), for example, said while referring to an example line:

I'm looking at the formula here, trying to see how you solve one (Force 1) given the angle.

Whereas a Poor student referred to examples with a general global goal, such as:

What do they do?

then proceeded to read the first line.

Learning from an Example During Problem Solving

Since the Poor students spent a considerable amount of effort rereading the examples while solving problems, it may be that some students prefer to learn in this context, while others prefer to study without a specific problem-solving goal. To evaluate this conjecture, we looked for explanations generated during reference to example episodes within the problem-solving protocols of the first set of isomorphic problems for each of the three examples.

The results show that the Good students generated as many explanations as the Poor students, (2.00 vs. 2.75). However, all the explanations of the Good students were generated by one student (S110) who had generated the fewest explanations while studying examples. (Many of the explanations provided by the Good students while example-studying were generated by only three out of the four Good students.) Hence, this particular Good student (S110) does fit our conjecture that some students prefer to explain while studying and others prefer to explain while solving problems. Even with such preference, the amount of explanations provided by the Poor students in the problem-solving context is nowhere near the level that the Good students generated while studying examples (2.75 statements per example vs. 15.5).

DISCUSSION

Our research queried the extent to which the way individuals learn to solve problems is attributable to the way knowledge is encoded from the example-exercises. We found, in general, that Good students (those who have greater success at solving problems) tend to study example-exercises in a text by explaining and providing justifications for each action. That is, their explanations refine and expand the conditions of an action, explicate the consequences of an action, provide a goal for a set of actions, relate the consequences of one action to another, and explain the meaning of a set of quantitative expressions. Lewis and Mack (1982) also noticed that learners
often offer explanations spontaneously for why things happen the way they do. More importantly, their explanations relate the actions to the principles and concepts in the text, which in turn further enhances their understanding of the principles. Essentially, Good students read the example with understanding. Poor students do not often explain the example-exercises to themselves. When they do, their explanations do not seem to connect with their understanding of the principles and concepts in the text.

Good students can also accurately monitor their comprehension failures and successes, while studying examples. This is consistent with what is generally found in the literature (see Brown, Bransford, Ferrara, & Campione, 1983). They seem to detect accurately when they do and do not understand. Such accuracy in detection is extremely important because it leads to an attempt to try to understand the material. Poor students, on the other hand, seem less accurate at detecting comprehension failures. When they do, these occur where mathematical expressions are being manipulated, rather than at places where conceptual principles are being instantiated.

Finally, we find that the Good students use the examples in a very different way from the Poor students. In general, Good students, during problem solving, use the examples for a specific reference, whereas Poor students reread them as if to search for a solution. This interpretation is consistent with the following set of behaviors. First, Good students refer to the examples less frequently than the Poor students within each solution attempt. Second, when they do refer to the examples, Good students read only 1 or 2 lines, whereas Poor students read around 13 lines. The Good students read only 1 or 2 lines because they have a specific goal in mind. Once they find what they need from the examples, both the Good and Poor students can adequately map the example and check it for accuracy. These differences in the ways Good and Poor students use examples suggest that the Good (but not the Poor) students understand the examples when they study them, as a consequence of the explanations they generate, and can then use the examples as a reference.

Our results stand in contrast to the mixed results often obtained in laboratory research examining the role of elaboration in problem solving. It has sometimes been found that elaboration generally does not facilitate problem solving (Reder et al., 1986; Reed et al., 1985). The difference between these studies and the present one is that we examine the explanations students spontaneously produce, whereas these other studies provide the elaborations for the students to read. The difficulty of interpreting results of a study which provides the elaboration is that when it fails to facilitate problem solving, one cannot know whether the elaborations themselves are inadequate, or whether providing elaborations is futile.

Although the task in which we observed learning was how students studied example-exercises, we believe that our results generalize to how Good and Poor students learn many kinds of materials, such as declarative text (Bransford et al., 1982), diagrams, tables, charts, and so forth, as well as solving other types of problems. In fact, our results are reminiscent of an earlier study by Gagne and Smith (1962) which showed that asking students to verbalize while they solved a three-disc, puzzle-type problem correlated significantly with success at solving problems. Although Gagne and Smith did not report individual differences, they were able to categorize the protocols into four types:

1. Those which oriented toward single moves in the solution of the problem, with explanations such as:
 - only possible move
 - Just to try it
 - don’t know

2. Those which anticipated to the extent of two moves, with comments such as:
 - To get at the larger disc
to free up a space

3. Reasons which anticipated sequences of moves, such as:
 - move as with a three-disc sequence
 - if disc is odd-numbered, move to circle B

4. Reasons which explained the principles, such as:
 - move odd-numbered disc in the clockwise direction
 - move even-numbered discs in the counterclockwise direction.

In light of our present analysis, we would expect the poor solvers not only to produce fewer explanations (i.e., less articulation), but also to produce explanations that are not necessarily justifications (as those in Type 1). We would expect good solvers to produce both more explanations and also to produce explanations which basically state subgoals, (as those in Type 2), which induce a goal from a sequence of actions (as those in Type 3), and which relate actions to principles (as those in Type 4). Unfortunately, Gagne and Smith did not break their students down into Good and Poor solvers. In other words, we do not think that articulating an explanation per se is the critical factor (as suggested by Gagne & Smith); rather, what the students articulated is the most important factor.

Why do self-explanations help understanding and problem solving? To put it in another way, what is learned from self-explanations? One interpretation is that self-explanations consist of the creation of inference rules that are instantiations of the principles and definitions introduced in the text. These inference rules are specific to the example presented. (They may be generalized later during episodes of learning from problem solving.) For example, we can collapse related explanations into inference rules. They are
TABLE 7
Inference Rules Coded from Explanations

| Rule 1: IF there is a body, and it has weight |
| THEN the weight will act as a force. |

| Rule 2: IF there are forces upholding a body |
| THEN they are resistant to the body's weight and they are equal to the force of weight. |

| Rule 3: IF there is the force of the weight of the body and there are resistance forces... |
| THEN they will all equal out. |

related, by our definition, if they refer to the same conditions. For example, the last five explanations shown in Table 1 (III-VII), can be converted to three inference rules (shown in Table 7). These inference rules may be taken as instantiations of the definition of a force (Rule 1), application of Newton's third law (Rule 2), and instantiation of Newton's second law (Rule 3). In fact, Larkin and Simon (1987) found it necessary to model problem solving by the use of similar kinds of inference rules.

It is fairly obvious why inference rules are useful: They spell out more clearly the specific conditions or situations in which a specific action is to be taken; they are more operational than general principles, not only because the conditions are more clearly specified, but also because they are more decomposed than a general principle. Once these inference rules are constructed, then the process of compilation can take over and these declarative inference rules may be converted to procedures. Thus, we think self-explanations provide the means for the construction of inference rules which can be later proceduralized into usable skills. We therefore agree with Larkin and Simon's (1987, p. 75) conjecture that,

students may well be unable to solve problems in part because they learn principles, and do not translate them into inference rules.

As noted earlier, we found no differences in the abilities of the Good and Poor students to write down the declarative definitions and principles introduced in the text part of the chapter. However, unless students translate the principles and definitions into specific inference rules, they cannot use them to solve problems.

The construction of inference rules serves several additional purposes. Oftentimes, some subsets of the components of the laws were not encoded, because the students may not have realized how important they were. However, when these subcomponents are mentioned in the example, they become more salient, and the self-explanations allow the students to generate inference rules to incorporate specifically these subcomponents. Framed another way, an alternative interpretation is to say that some subcomponents are less accessible than others, and thus are not articulated explicitly (as in the case of answering declarative questions about them in the pretest). Self-explanations generated while example-studying construct inference rules which make these subcomponents more explicit and accessible.

Another property of these explanations is that they may be conceived of as situation-specific inference rules. The assumption here is that one first needs to build a corpus of situation-specific facts or inference rules and eventually, one can generalize across situations. We believe that the necessity of creating a corpus of situation-specific rules is a necessary precursor to inducing an operative general principle (assuming that learning a principle by being told is not operative). This may explain why our intuition has always been that it is not possible to expect novice students to become more successful problem solvers by simply telling them the principles which govern the way experts sort the physics problems (cf. data from Chi, Feltovich, & Glaser, 1981). This skepticism would be warranted if telling students a general principle is not operative unless the general principle has been instantiated in a number of situation-specific instances. Thus, self-explanations may serve the role of constructing these situation-specific rules. How these situation-specific rules are derived remains a mystery.*

Another possible mechanism underlying the role of self-explanations in problem solving may be that self-explanations produce a qualitative constraint network which represents knowledge of the solution step. For instance, a system of trigonometry constraints could link together a general equation, such as \(F_x = F_x \), the diagram of forces, and a specific equation, \(-F_\cos30^\circ + F_\cos 45^\circ = 0\). When a similar problem is encountered, say one with different angles, qualitative propagation through the constraint network can yield a plan for the quantitative solution. More importantly, the constraints can propagate information in both forwards and backwards directions, so that the above constraint system could be used to generate a plan for solving for one angle, given the values of the other angle, and the net force. Such qualitative constraint networks may be an important component of the inference structure generated by self-explanations, at least initially (K. VanLehn, personal communication, May, 1988).

Finally, models do exist in the AI literature which can generalize from a single training example (Lewis, 1986; Mitchell et al., 1986). Such generalizations are acquired by constructing a proof (explanation) of how an example is an instance of the concept which it exemplifies; then, within the formal theory of the task domain, the explanation is generalized to cover a larger class of examples. Our data, at a gross level, provide empirical evidence to

* There appears to be two types of situation-specific rules. One type is local, in that it can be generated through direct derivation from a particular statement line in the solution-example; another type of explanation seems to be generated with the constraint of the general principle. It is unclear to us at the moment whether students needed full understanding of the general principles in order to generate these sorts of explanations.
suggest that such explanation-based learning may indeed be the way students generalize from single examples. However, we need a more detailed look at these models to see the extent to which they can accommodate our data. In Lewis' (1988) model (EXPL), the system basically contains a set of heuristics for detecting the relation between the action taken and the outcome of an action. For example, in learning text editing, suppose a student is observing a demonstration of the following action and its outcome: The screen draws a box around an object, and shortly after, the object in the box disappears. An IDENTITY heuristic will be able to conjecture that the relation between the action of drawing a box around an object causes the object to disappear. Thus, the function of explanations is to apply these heuristics to come up with a hypothesis of the relation between the action and the outcome. Notice that these heuristics are domain-dependent. In our data, understanding an action and its outcome requires conjecturing not only a relation between the action and its outcome, but also to explain how that action–outcome pair is an instantiation of a principle which is part of the domain theory. Thus, the greatest difference between what our students can do and what EXPL can do is that EXPL cannot capture the role of the domain knowledge. In fact, the to-be-learned domain (text editing) is very syntactic in nature, and does not require domain knowledge in order to understand the example actions.

However, in Mitchell et al.'s (1986) system (EBS), domain knowledge is provided. The contrast between Mitchell's theory and our data is that Mitchell's system has "too much" domain knowledge in the following sense: When an example has to be proved to be an instance of a goal concept, the system already has a clear and a complete definition of that goal concept. Thus, the function of explanation is to produce a proof that the example is an instance of the goal concept. This may require that some features of the example be inferred so that the features of the example will match those defined in the goal concept. If we assume that the knowledge that permits these inferences to be made on the example concept is analogous to the domain knowledge of physics, then this particular aspect of the model does seem to simulate parts of our students' behavior. However, the key difference between the knowledge possessed by the EBS system and our students is that EBS has all the knowledge of the goal concept, whereas our students do not. For example, our students do not have a complete understanding of Newton's laws. Furthermore, the function of students' explanations seems to be both the enhancement of their initial understanding and generation of new understanding.

In sum, while our data do seem to support these two AI models in a general way, detailed analyses point out that these models are incomplete in describing actual learning, mainly because students' initial learning from text is more limited than the EBS model, for example, and yet their subsequent learning from the examples is more sophisticated.

We conclude by once again quoting Simon (1979), with regard to the characteristics of the learner:

It is left largely to the student (by examining worked-out examples, by working problems, or in some other way) to generate the productions, the condition-action pairs, that are required to solve problems (p. 92, emphasis added).

We believe that the "some other way" that students learn is via generating and completing explanations. Hence, we have provided evidence for Simon's insight that "students learn both by being taught and by self-instruction" (p. 87), whereby self-instruction is mediated by self-explanations.

Original Submission Date: June 23, 1988.

REFERENCES

