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INTRODUCTION 
 

 How do people acquire a complex body of knowledge, such as the history of the Panama 

Canal, the structure of the solar system, or the explanation for how the human circulatory system 

works?  Complex learning takes longer than a few minutes and requires processes that are more 

complicated than the associative processes needed to memorize pairs of words.  The materials 

that support complex learning � such as texts, illustrations, practice problems, instructor 

feedback -- presented in classrooms and elsewhere, are often difficult to understand, and might 

require extensive processing. For example, learning  about the human circulatory system requires 

many component processes, such as integrating information from several sources, generating 

inferences, connecting new information with existing knowledge, retrieving appropriate 

analogies, producing explanations, coordinating different representations and perspectives, 

abandoning or rejecting prior concepts that are no longer useful, and so forth.  Many of these 

component processes are still poorly understood, so that we have even less understanding of the 

complex process of learning a large body of knowledge.  

 Complex knowledge can be partitioned into two types: declarative knowledge and 

procedural knowledge.  Declarative knowledge has traditionally been defined as knowledge of 

facts or knowing that; whereas procedural knowledge is knowing how (Anderson, 1976; 

Winograd, 1975).   Declarative knowledge is descriptive and use-independent.  It embodies 

concepts, principles, ideas, schemas, and theories (Ohlsson, 1994; 1996).  Examples of 

declarative knowledge are the laws of the number system, Darwin�s theory of evolution, and the 

history of the Panama Canal. The sum total of a person's declarative knowledge is his or her 

understanding of the way the world, or some part or aspect of the world, works, independently of 

the particular tasks the person undertakes. Procedural knowledge, such as how to operate and 

troubleshoot a machine, how to solve a physics problem, or how to use a computer text editor, is 

prescriptive and use-specific.  It consists of associations between goals, situations, and actions.  

Research in cognitive neuroscience supports the reality of this distinction between declarative 

and procedural knowledge (Squire, 1987). 
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The acquisition of complex procedural knowledge has been extensively investigated in 

laboratory studies of skill acquisition, problem solving, and expertise (Ericsson, 1996; Feltovich, 

Ford & Hoffman, 1997), and in field studies of practitioners (Hutchins, 1995; Keller & Keller, 

1996). Issues that have been explored include the role of perceptual organization in expert 

decision making, the breakdown of goals into sub-goals, the effect of ill-defined goals, the nature 

of search strategies, choices between competing strategies, the conditions of transfer of problem 

solving strategies from one problem context to another, the effect of alternative problem 

representations, the role of collaboration in complex tasks, and so on.  As will become obvious in 

this chapter, the issues relevant to the study of complex procedural learning are different from 

those relevant to the study of complex declarative learning.  Because the acquisition of 

procedural knowledge has been researched so extensively in the past few decades, there are 

several recent reviews (Holyoak, 1995; Lovett, 2002; Lovett & Anderson, this volume; 

VanLehn, 1989).  Therefore, this chapter will focus primarily on the acquisition of a body of 

declarative knowledge.  

The study of complex declarative learning is still in its infancy and has not yet produced a 

unified theory or paradigmatic framework. The organization of this chapter is meant to suggest 

one form that such a framework might take.  In the first section, we describe basic characteristics 

of complex declarative knowledge.  In the second section, we classify the different types of 

changes that occur in declarative knowledge as one learns. This classification is the main 

contribution of the chapter.  The third section is a brief treatment of the so-called learning 

paradox (Bereiter, 1985).  We end with a few concluding remarks. 

 
 

BASIC CHARACTERISTICS OF DECLARATIVE KNOWLEDGE 

Size of Knowledge Base 

The most basic observation one can make about declarative knowledge is that human 

beings have a lot of it. There are no precise estimates of the amount of knowledge a person 

possesses but two attempts at an estimate seem well grounded. The first is an estimate of the size 
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of the mental lexicon.  The average college educated adult knows between 40,000 – 60,000 

words (Miller, 1996, pp. 136-138). The total number of words in the English language is larger 

than 100,000. Because concepts only constitute a subset of declarative knowledge, this 

represents a lower bound on the size of a person's declarative knowledge base.  Second, 

Landauer (1986) had estimated how much information, measured in bits, people can remember 

from a lifetime of learning.  His estimate is 2 X 10^9 bits by age 70. It is not straightforward to 

convert bits to concepts or pieces of knowledge, but even very fast computers use only 32 or 64 

bits to encode one basic instruction. If we make the conservative assumption that it requires 

1,000 bits to encode one piece of knowledge, Landauer's estimate implies that a person's 

declarative knowledge base eventually approximates a million pieces of knowledge.  

 These estimates apply to the size of the knowledge base as a whole. At the level of 

individual domains, estimates of the size of domain-specific knowledge bases tend to result in 

numbers that are comparable to estimates of the mental lexicon. For example, Simon and 

Gilmartin (1973) estimated the number of chess piece configurations – chunks or patterns – 

known by master players to be between 10,000 and 100,000.  We do not know whether this is a 

coincidence or a symptom of some deeper regularity. 

 In short, even without a precise definition of what is to count as a unit of knowledge, the 

average person's declarative knowledge base must be measured in tens of thousands, more likely 

hundreds of thousands of units. How all this knowledge – the raw material for reasoning and 

thinking -- is acquired is clearly a non-trivial, but under-researched, question.  

 

Organization 

 Knowledge does not grow as a set of isolated units but in some organized fashion. To 

capture the organization of the learners’ declarative knowledge, cognitive scientists operate with 
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three distinct representational constructs: semantic networks, theories, and schemas (Markman, 

1999).  

 The key claim behind semantic networks is that a person's declarative knowledge base 

can be thought of as a gigantic set of nodes (concepts) connected by links (relations). All 

knowledge is interrelated and cognitive processes, such as retrieval and inferencing, operate by 

traversing the links. Early computer simulations of long-term memory for declarative knowledge 

explored variants of this network concept (Abelson, 1973; Anderson & Bower, 1973; Norman & 

Rumelhart, 1975; Quillian, 1968; Rips & Medin, this volume; Schank, 1972). 

Because the distance between two nodes in a semantic network is determined by the 

number of relations one must traverse to reach from one to the other, semantic networks 

implicitly claim that declarative knowledge is grouped by domain. We use the term "domain" to 

refer to both informal areas of knowledge such as home decorating, eating at a restaurant, and 

watching sports, and formal disciplines like botany, linguistics, and physics. Pieces of knowledge 

that belong to the same domain are similar in meaning and therefore cluster together 

functionally. Consistent with this notion, membership in the same domain tends to produce 

higher similarity ratings, stronger priming effects, and other quantitative behavioral 

consequences; descriptions of these well-known effects can be found in textbooks in cognitive 

psychology (e.g., Ashcraft, 2002; Reisberg, 2001). 

The structure of any domain representation depends on the dominant relations of that 

domain. If the dominant relation is set inclusion, the representation is organized as a hierarchy. 

The standard taxonomies for animals and plants are prototypical examples. In contrast, relations 

like cause-effect and before-after produce chain-like structures. In general, the representations of 

domains are locally structured by their dominant relations. 

The semantic network idea claims that all knowledge is interrelated, but it does not 

propose any single, overarching structure for the network as a whole. Concepts and assertions are 
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components of domains, but domains are not components of a yet higher level of organization. 

Domains relate to each other in a contingent rather than systematic way. Informal observations 

support this notion. We have one concept hierarchy for tools and another for furniture, but the 

node lamp appears in both. Home decorating is not a subset of cooking, nor vice versa, but the 

two share the kitchen. The concept of tangled hierarchies (Hofstadter, 1999) describes one 

aspect of local, unsystematic contact points between internally structured domains. These 

comments are somewhat speculative, because there is little cognitive research aimed at 

elucidating the structure of the declarative knowledge base as a whole. 

 Domains can also be represented as theories.  Theories are “deep” representations 

(borrowing a term from social psychologists, see Rokeach, 1970) in the sense of having well-

articulated center-periphery structures. That is, a theory is organized around a small set of core 

concepts or principles – big ideas – on which the rest of the elements in the domain are 

dependent. The core knowledge elements are typically fundamental and abstract, while the 

peripheral ones are based on, derived from, or instances of the core ones. The most pristine 

examples of center-periphery structures are the formal axiomatic systems of mathematics and 

logic, where a small set of chosen axioms provide a basis for the proofs of all other theorems in a 

particular formal theory; and natural science theories such as Newton's theory of mechanical 

motion, Darwin's theory of biological evolution, and the atomic theory of chemical reactions. 

These theories are obviously experts’ representations and novices' representations of those same 

domains may or may not exhibit a similar structure, indicating that change in structure is one 

dimension of complex learning. For example, DiSessa (1988, 1993) has argued that novice 

knowledge of mechanical motion is not theory-like at all, but is better thought of as an irregular 

collection of fragments (see Smith, DiSessa & Roschelle, 1995, for a modified version of this 

view). 
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Other cognitive scientists, however, prefer to represent the novices’ understandings of the 

natural world as intuitive theories, in deliberate analogy with the explicit and codified theories of 

scientists and mathematicians (Gopnik & Wellman 1994; Gopnik & Meltzoff, 1997; McCloskey, 

1983; Wiser & Carey, 1983). By referring to someone's naïve representation as a theory, one 

implies specifically that the representation shares certain characteristics with explicit theories; 

most prominently that it has a center-periphery structure.1 

A well-developed center-periphery structure is often the hallmark of an expert's 

representation of a domain, and a comparison between novices’ and experts’ representations of 

the same domain often reveals differences in the “depth” of their representations.  However, one 

can raise the question whether “depth” should also be construed as a characteristic of the domain 

itself. That is, are some domains intrinsically “deep” while others not, so that a center-periphery 

structure is not an appropriate representation for some domains?  If so, we would expect neither 

experts nor novices to construct “deep” representations of those domains. For example, in 

informal everyday domains such as home decorating or eating at a restaurant, the center-

periphery structure is certainly less salient. (However, even if an everyday domain such as 

Entertaining might not have a principled theory, its sub-domain of formal table setting does; 

Bykofsky & Fargis, 1995, pp. 144-146; Tuckerman & Dunnan,1995, pp.176-177.)  Moreover, 

even for informal domains such as cooking that we as novices might claim to lack deep 

principles, many professional chefs would disagree. Thus, to what extent is the pervasive striving 

for a center-periphery structure with increasing expertise a law of mental representation, and to 

what extent it is an adaptation to the objective structure of domains, remains an open question. 

The network concept codifies the intuition that everything is related to everything else, 

and the theory concept codifies the intuition that some knowledge elements are more important 

than others. The concept of a schema, on the other hand, codifies the intuition that much of our 

declarative knowledge represents recurring patterns in experience. Although the term "schema" 
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have never been formally defined, the key strands in this construct are nevertheless clear. To a 

first approximation, a schema is a set of relations among a set of slots or attributes, where the 

slots can be thought of as variables that can take values within a specified range (Bobrow & 

Collins, 1975; Brewer & Nakamura, 1984; Marshall, 1995; Minsky, 1975; Norman & 

Rumelhart, 1975; Thorndyke, 1984).  Take the concept of "cousin" as an example. A cousin can 

be defined by a schema containing slots such as children, parents, and siblings, along with a 

collection of relations such as parent-of and sibling-of: 

(cousin-of y w) = def [(parent-of x y)(sibling-of z x)(parent-of z w)] 

To say that a person understands that Steve (slot y) and Bob (slot w) are cousins is to say that he 

or she knows that Steve (slot y) is the son of Carl (slot x), Carl is the brother of John (slot z), and 

John is the father of Bob (slot w).  The slots are associated with ranges of appropriate values. 

Being a child, Steve must be younger than Carl, so slot y might have an age range of 1-50 years 

old, and slot x might have an age range of 21 to 85-years-old.  Similarly, slot y can have the 

values of being either a male (a son) or a female (a daughter). 

Schemas are bounded units of knowledge, and it is essential to their hypothesized 

function that they are retrieved or activated as units. That is, if one part of a schema (relation or 

slot) is activated, there is a high probability that the rest of the schema will be retrieved as well. 

Schemas are typically abstract, precisely because they represent recurring patterns in experience. 

Level of abstraction can vary (Ohlsson, 1993). 

There are many variants of the schema idea in the cognitive literature.  In the classic 

chess studies of deGroot (1965) and Chase and Simon (1973), chess experts were found to know 

by heart thousands of board patterns (each pattern consisting of a few chess pieces arranged in a 

meaningful configuration), and these familiar patterns altered their perception of the board so as 

to suggest promising moves.  Similar findings regarding the power of perceptual patterns to 

influence high level cognition can be seen in physician’s ability to read x-rays (Lesgold, 
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Rubinson, Feltovich, Glaser, Klopfer, & Wang, 1988) and fire fighter's ability to seize up a fire 

(Klein, 1998).   Similarly, there is evidence to show that experts’ programming knowledge 

includes frame-like structures called plans (Soloway & Erhlich, 1984), which are stereotypical 

situations that occur frequently in programming: looping, accumulating values, and so forth.  

These basic plans not only serve as the building blocks when writing programs, but they are also 

necessary for comprehension of programs.  Scripts are higher-order knowledge structures that 

represent people’s knowledge of informal or everyday events, such as eating in a restaurant or 

visting the dentist's office (Schank & Abelson, 1977). Explanation patterns are schemas for how 

to construct explanations of particular types (Kitcher, 1993; Ohlsson, 2002; Ohlsson & 

Hemmerich, 1999; Schank, 1986). Yet other schema-like constructs have been proposed (e.g., 

Collins & Ferguson, 1993; Keegan, 1989; Machamer & Woody, 1992). Chunks, explanation 

patterns, frames, plans, and scripts are variants of the basic idea that much declarative knowledge 

consists of representations of recurring patterns. For simplicity, we will use the term schema 

throughout this chapter to refer to all of these constructs. 

Although the three constructs of networks, theories, and schemas appear side by side in 

the cognitive literature, the relations between them are unclear. First, it is not clear how a schema 

should be understood within the larger notion of a semantic network. For a schema to be a 

distinct representational entity, there has to be a well-defined boundary between the schema and 

the rest of the knowledge network. (If not, activation will spread evenly across the nodes and 

links in the schema and the nodes and links that are not in the schema, which contradicts the 

central claim of schema theory that the probability of spreading from one node within the 

schema to another node within the schema is higher than spreading to a node outside the 

schema.) However, the  concept of a network does not provide any obvious way to explain what 

would constitute such a boundary, other than to assume that links among nodes within a schema 

are more strongly connected than links among nodes between schemas (Chi & Ceci, 1987; 
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Rumelhart, Smolensky, McClelland, & Hinton, 1986).  The differentiation in the strength of 

linkages can create clusters that can be conceived of as schemas (Chi & Koeske, 1983).   

The relations between a schema and a theory are equally unclear. One can conceptualize 

a schema as a tool for organizing information, but it is not obvious whether a schema makes 

assertions or claims about the world.  In this conception, schemas are not theories, but people 

obviously have theories.  Finally, any explication of the relation between networks and theories 

must specify how the center-periphery structure that is intrinsic to theories can be embedded 

within networks. 

In this chapter, we take the stance that networks, theories and schemas, are three partially 

overlapping but distinct theoretical constructs. Different aspects of the organization of 

declarative knowledge are best understood with the help of one or the other of these constructs, 

or with some mixture of the three. 

In summary, declarative knowledge bases are very large and they exhibit complex 

organization. The notion of semantic networks captures the fact that every part of a person's 

knowledge is related, directly or indirectly, to every other part. Representations of particular 

domains vary in “depth”, that is, the extent to which they are characterized by a central set of 

fundamental ideas or principles to which other, more peripheral knowledge units are related. 

Declarative knowledge also represents recurring patterns in experience with schemas, small 

packets of abstract structural information that are retrieved as units and used to organize 

information. These three types of organization cannot easily be reduced to each other, and 

explanations of change in complex knowledge draw upon one or the other of these constructs or 

on some mixture of the three. 

 

TYPES OF CHANGES 
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The purpose of this section is to describe different types of changes in the knowledge 

base as one learns a body of declarative knowledge. There exists no widely accepted taxonomy 

of changes in a body of declarative knowledge.  We chose to characterize changes as potentially 

occurring in seven dimensions. Presumably, different cognitive mechanisms are responsible for 

changes along different dimensions, but the field has not specified with any precision learning 

mechanisms for every dimension. In each section below, we specify a dimension of change, 

summarize some relevant empirical evidence, and describe the cognitive processes and 

mechanisms, if any, that have been proposed to explain change along that dimension. 

 

Larger Size 

Cumulative growth in size is a basic dimension of change in a body of declarative 

knowledge. Adults obviously know more about the world in general than do children (Chi, 

1976); so that children are often referred to as universal novices (Brown & DeLoache, 1978). 

Similarly, experts obviously know more about their domains of expertise than novices (Chi, 

Glaser and Farr, 1988). People routinely accumulate additional facts about the world from 

sources such as news programs, texts, pictures, and conversations.  These sources present people 

with some factual information that they did not know before, and some of those facts are 

retained. The declarative knowledge base continues to grow in size throughout the life span, 

albeit perhaps at a slower rate as a person ages (Rosenzweig, 2001).  Rumelhart and Norman 

(1978) have referred to this type of cumulative addition of pieces of knowledge as accretion. 

For adults, cumulative acquisition of individual pieces of knowledge – facts -- must be 

pervasive and account for a large proportion of all learning. There is little mystery as to the 

processes of acquisition.  People acquire them via perception and observation, via 

comprehension of oral and written discourse, and via inductive (Sloman & Lagnado, this 

volume) and deductive (Evans, this volume) reasoning (i.e., by inferring new facts from prior 
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knowledge, or integrating new facts with old knowledge and making further inferences from the 

combination).   

A particularly interesting property of accretion is that it is self-strengthening. Many 

psychology studies have confirmed that what is encoded, comprehended, and inferred depends 

on the individual learner’s prior knowledge.  For example, Spilich, Vesonder, Chiesi and Voss 

(1979) presented a passage describing a fictitious baseball game.  Not only was the amount of 

recall of the individuals with high prior baseball knowledge greater (suggesting that the 

information was properly encoded), but the pattern of recall also differed.  The high knowledge 

individuals recalled more information directly related to the goal structure of the game (Spilich et 

al, 1979) as well as the actions of the game and the related changes in the game states (Voss, 

Vesonder & Spilich, 1980), whereas the low knowledge individuals recalled the teams, the 

weather, and other less important events, and confused the order of the actions.  Moreover, high 

knowledge individuals were better than low knowledge individuals at integrating a sequence of 

sentences (Chiesi, Spilich & Voss, 1979, Exp. V).  In short, prior knowledge leads to more 

effective accretion, which in turn generates more prior knowledge. 

Although encoding, comprehending, and inference processes augment the knowledge 

base, they do not necessarily cause deep changes in prior knowledge. Consider once again a 

baseball fan reading a newspaper article about a game. He or she will acquire facts that are 

obviously new – the score in the 8th inning cannot have been known before the game has been 

played – but the facts about past games are not altered, and he or she is unlikely to acquire a new 

and different conception of the game itself, although additional facts about baseball games per se 

may be acquired.  The key characteristic that makes this an instance of accretion is that the 

learner already has a schema for a baseball game, which presumably has slots for the basic 

actions (throwing the ball), the highest level goal (winning the game), as well as other aspects of 

the game (Soloway, 1978).  Once that schema has been acquired, to become increasingly 
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knowledgeable is largely to acquire more knowledge that fits into those slots, as well as 

knowledge of sub-goals and relations between the basic actions and the goal (Means & Voss, 

1985).  Similarly, readers of narratives might acquire facts about some fictional events, but they 

are unlikely to change their conceptions of causality, time, or human motivation, arguably three 

central schemas in comprehending narratives (Graesser, Singer, & Trabasso, 1994; Kintsch, 

1998). 

These observations imply that we need to distinguish between two levels of learning. 

Comprehension as normally understood results in the construction of a specific instance of a 

schema or the accretion of schema-relevant facts. New information is assimilated to existing 

schemas. This is the basic mechanism of accretion. The size of the relevant declarative 

knowledge base increases without fundamental changes in structure.  

Deeper learning, on the other hand, results in some structural modification of the 

learner’s prior schema.  The same distinction can easily be expressed within the other two 

theoretical frameworks that we use in this chapter.  In network terms, accretion adds nodes and 

links without deleting or altering any prior ones, while deeper learning requires a reorganization 

of the network. In terms of intuitive theories, cumulative growth might develop the relations 

between the core principles and peripheral knowledge items, while deeper learning either 

develops the core principles, replaces or alters one or more of the core principles. We discuss 

deeper learning processes later in this chapter. 

 

Denser Connectedness 

In network terms, connectedness can be defined as the density of relations between the 

knowledge elements.  We would expect the density of connections in a representation to increase 

as the learner acquires more knowledge.  This implication was supported by a study in which we 

compared the node-link representation of a single child’s knowledge of 20 familiar dinosaurs 
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with his representation of 20 less familiar dinosaurs (Chi and Koeske, 1983, see Figures 1 and 2).  

The nodes and relations of the network were captured from the child’s generation protocols of 

dinosaurs and their attributes.  The representation of the 20 more familiar dinosaurs was better 

connected into meaningful clusters in that it had more links relating the dinosaurs that belonged 

to the same family, as well as relating the dinosaurs with their attributes of diet and habitat. The 

representation of the 20 less familiar dinosaurs had fewer links within clusters, and thus the 

cluster were less densely connected, so that they appear less differentiated and more diffused.  In 

short, the better learned materials were more densely connected in an organized way, even 

though overall, the two networks represented the same number of nodes and links. 

----------------------------------Insert Figures 1 and 2 here---------------------------------- 

A special case of connectedness is the mapping between layers.  Layers can be defined in 

different ways in different domains.  For example, in the context of computer programming we 

can conceive of the specification (the goals) as the highest layer, and the implementation (the 

data structures and primitive actions of the program) as the lowest level.  Designing and 

comprehending a program require building a bridge between the specification and the 

implementation (Brooks, 1983).  This bridge maps the implementation to the specification 

through a series of layers.  Expert programmers are skilled at linking high-level goals to specific 

segments of programming code, whereas less skilled programmers are more likely to link 

program goals to triggers like variable names (Pennington, 1987).  Once again, we see that a 

person’s knowledge base appears to become more densely connected with increased knowledge 

acquisition. 

Another special case of connectedness is between the conditions (declarative knowledge) 

and the actions (procedural knowledge).  For example, experienced and inexperienced pilots 

knew equivalent number of facts, but the inexperienced pilots failed to apply them in the context 
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of actions (Stokes, Kemper & Kite, 1997).  One can interpret this to mean that the facts that the 

inexperienced pilots knew were not connected to their actions.   

Although the cited studies involved highly domain-specific relations, there are many 

types of connections that play central roles in declarative knowledge bases. For example, causal 

relations play a central role in the comprehension of narratives (Buehner & Cheng, this volume; 

Trabasso & van den Broek, 1985) as well as scientific theories, and hierarchical relations such as 

set-subset relations form the backbone of taxonomic or classificatory knowledge structures (Rips 

& Medin, this volume). The general point is that as knowledge acquisition proceeds in a domain, 

the learner's representation of that domain will increase in connectedness in a meaningful way. 

 

Increased Consistency 

The consistency of a knowledge representation refers to the degree to which the multiple 

assertions embedded in an intuitive theory can, in fact, be true at the same time.  A person who 

claims that the Earth is round but who refuses to sail on the ocean for fear of falling over the 

edge is inconsistent in this sense. 

The concept of consistency has been explored for decades in many areas of psychology, 

philosophy, and education.  Social psychologists investigated the consistency of belief systems in 

the 50’s and 60’s (Abelson, Aronson, McGuire, Newcomb, Rosenberg & Tannenbaum, 1968; 

Heider, 1944; Festinger, 1962/1957; Fishbein & Ajzen, 1975; McGuire, 1968), and it remains an 

area of active research (Eagly & Chaiken, 1993; Harmon-Jones & Mills, 1999). In the wake of 

Thomas Kuhn's influential book The Structure of Scientific Revolutions (Kuhn, 1970), the 

philosophical debate about theory change in science came to focus on how scientists react to 

inconsistencies (anomalies) between theory and data, and this perspective carried over into 

contemporary approaches to science education (Hewson & Hewson, 1984; Posner, Strike, 

Hewson & Gertzog, 1982; Strike & Posner, 1985). Education researchers were already primed 
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for this focus by the traditional concern in the Piagetian tradition with contradictions and 

inconsistencies as driving forces for cognitive development (Piaget, 1985).  Unfortunately, the 

social, philosophical, educational, and developmental literatures on cognitive consistency are not 

as tightly integrated as they ought to be in the light of the nearly identical ideas that drive 

research in these fields. 

It is reasonably certain that people prefer consistent over inconsistent beliefs, at least 

locally, and that the discovery of local inconsistency (or conflict, Ames & Murray, 1982) triggers 

cognitive processes that aim to restore consistency, just as Piaget, Festinger, Kuhn, and others 

have hypothesized. For example, Thagard (1989, 2000) has explored a computational network 

model called ECHO in which consistency is defined as the lack of contradictions between 

assertions and hypotheses. ECHO has successfully predicted human data from a variety of 

situations, including the evaluation of scientific theories in the light of data (Thagard, 1992a) and 

the outcome of court cases (Thagard, 1992b). 

However, the relation between experienced inconsistency and cognitive change is 

complex. Several investigators have suggested that conflict triggers efforts to restore consistency 

only when the conflict is recognized by the learner himself or herself through reflection (Chi, 

2000; Ohlsson, 1999; Strike & Posner, 1992).  When learners are alerted to inconsistencies and 

conflicts by an external source, they are more likely to either assimilate or dismiss them (Chinn 

& Brewer, 1993). Contradiction highlighted by an external source is likely to trigger change 

processes only if the learner is dissatisfied with his or her current conception (Posner et al,  

1982). Furthermore, there are many ways to respond to inconsistency (Chinn & Brewer, 1993; 

Darden, 1992; Kelman & Baron, 1968) and not all modes of response increase consistency (as 

opposed to bypassing the problem); we return to this topic in the section on the learning paradox. 

 Consistency should not be confused with veridicality. It is possible for a knowledge 

representation to be locally consistent and yet be inaccurate.  For example, we have argued that 
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the naive conception of the circulatory system as a single loop system is flawed but nevertheless 

constrained by a consistent set of identifiable but inaccurate principles.  The learner can use such 

a flawed conception systematically to generate incorrect explanations. (Chi, 2000). Historically, 

the Ptolemian epicycle theory of the solar system was as internally consistent as the Keplerian 

theory, but obviously not as accurate. 

Consistency should also not be confused with level of expertise.  A more knowledgeable 

person does not necessarily have a more consistent domain representation than someone who 

knows less. Ability to operate with inconsistency has often been proposed as a sign of 

intellectual sophistication, while insistence on total consistency has long been associated with 

dogmatism and lack of intellectual flexibility (Ehrlich & Leed, 1969; Rokeach, 1960). A famous 

historical example is the resolution – or lack of resolution – within quantum mechanics between 

the wave and particle models of photons. These annoying entities insist on behaving as both 

waves and particles, and since the time of Niels Bohr physicists have been content to let them be 

that way.  

Consistency is sometimes used synonymously with the term coherence, as in Thagard’s 

(1992a) use of the term explanatory coherence to refer to the consistency between a hypothesis 

and evidence and other hypotheses. However, consistency is distinct from coherence in that, as a 

measure of a representation, coherence can be used to refer to the more well-defined 

connectedness in a semantic representation, in which the notion of contradiction or conflict is not 

an issue (Chi & Koeske, 1983).  There is not enough evidence nor agreement about the concept 

of coherence to warrant discussing it as a separate dimension of change.    

To summarize, increased consistency is an important type of change in a declarative 

knowledge base, but it is distinct from the concepts of higher veridicality, more advanced 

knowledge, and coherence. 
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Finer Grain of Representation 

Reality is not simple, and almost any aspect of it can be described or represented at 

different levels of grain. As one learns more about something, one often comes to understand it 

at a finer grain. For example, learning how the human circulatory system works involves 

learning the components of the system, such as the heart, the lungs, blood, and blood vessels, and 

the relation that the contraction of the heart sends blood to different parts of the body.   

Given this level of representation, one can then ask, how does the heart contract? To 

answer this question, one would have to learn about the constituents of the heart: the properties 

of contractive muscle fibers, the role of ventricle pressure, and so on.  The learner might push yet 

towards another level by asking how individual muscle fibers contract.  At each level the system 

is understood in terms of its constituent parts, and further knowledge acquisition expands each 

component into its constituent parts. This type of process expands the knowledge base, but in a 

particular way: It moves along part-of links (as opposed to kind of links). In network terms, what 

was formerly a single node is expanded downwards into an entire sub-tree. 

Miyake (1986) collected protocol data that illustrated this type of change.  She showed 

that dyads, in attempting to understand how a sewing machine works, would move to lower and 

lower levels when they recognized that they had not understood the mechanism.  For example, in 

figuring out how a stitch is made, one can understand it by explaining that the needle pushes a 

loop of the upper thread through the material to the underside, so that the upper thread loops 

entirely around the lower thread.  However, in order to understand how this looping mechanism 

works, one has to explain the mechanism at a yet finer level, namely in terms of how the bottom 

thread go through the loop of the upper thread.  

Knowledge expansion via finer grain of representation is quite common in the sciences. 

The ultimate example is perhaps the reduction by chemists of material substances to molecules, 

which in turn are described in terms of atoms, which in turn are re-represented by physicists in 
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terms of elementary particles.  We should keep in mind though that it is the experts’ 

representations of these domains that are refined, and novices’ representations do not necessarily 

follow suit. 

In analyzing biological systems like the circulatory system and machines such as the 

sewing machine, the parts are objects of the same kind as the system itself so that they embody 

the part-of relations. In these examples, valves and veins are of the same kind and they are both 

parts of the cardiovascular system, and thread and a stitch are both of the same kind and they are 

both parts of the sewing process. The link between the behavior of the parts and the behavior of 

the whole can often be understood in terms of direct cause and effect, or in terms of mechanical 

constraints that force movement in one direction rather than another, such as the valves in the 

veins.  

However, there are systems where the relation between the finer and coarser levels of 

analysis is not of the same kind and the behavior of the system is emergent (Chi, submitted; 

Wilensky & Resnick, 1999). A traffic jam is an example.  A traffic jam is a gridlock of cars such 

that cars can no longer move at normal speed.  But the cars are not of the same kind as the traffic 

jam.  In this kind of system, the (often) observable macro level behavior (the traffic jam) can be 

represented independently of the micro level objects (the moving cars). Each individual car may 

be following the same simple rule, which is to accelerate if there is no car in front within a 

certain distance and to slow down when there is another car within that distance. But the jam 

itself can move backward even though the individual cars move forward. Thus, the behavior of 

the individual cars in a jam is independent of the jam. Nevertheless, the macro level pattern (the 

jam) arises from local interactions among the micro level individual cars.  

Learning about systems of this kind does not necessarily proceed by unpacking parts into 

yet smaller parts, but might more often occur by acquiring the two representations of the system 

separately and then linking them. This type of learning process re-represents the macro in terms 
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of the relationship between the micro and the macro levels, in order to explain the macro level 

phenomenon (Chi, submitted; Chi & Hausmann, 2003).   

It is not clear how often people are driven to expand their representations downward to 

finer grain of analyses.  In everyday life, people do not always feel the necessity to connect 

phenomena at one level to phenomena at more fine-grained levels.  For example, people appear 

content to understand the weather at the level of wind, temperature, clouds, humidity, rain, and 

snow, without re-representing them at the finer levels of molecular phenomena available to the 

professional meteorologist (Wilson & Keil, 2000).  We do not yet understand the factors and 

processes that drive people to expand but the possibility of such expansion is one important 

dimension of change in declarative knowledge. 

 

Greater Complexity 

A distinct type of change in the knowledge structure is needed when the learner's current 

concepts are not sufficient to represent the phenomenon or system as a whole. The thing to be 

understood cannot be assimilated within any schema the learner has available. The learner can 

respond by creating a more complex schema (Halford, this volume).  Although very little is 

known about how more complex schemas are developed, one plausible hypothesis is that they 

are created by combining or assembling several existing schemas (Ohlsson & Hemmerich, 1999; 

Ohlsson & Lehtinen, 1997). 

The creation of the theory of evolution by natural selection is a case in point. In the 19th 

century, many biologists knew that there were variation within species and that many species 

produce more offspring than survive into adult (reproductive) age, and the fact (as opposed to the 

explanation) of inheritance was of course commonly accepted. The theory of evolution is the 

result of assembling or combining these three schemas in a  very particular way into a new, more 

complex schema. The change process here does not move along either kind-of or part-of  
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relations and it does not refine the grain of representation.  Instead, it moves to greater 

complexity. The resulting schema is more complex than either of the prerequisite schemas. Such 

a move does not necessarily require a higher level of abstraction (see next section). The prior 

principles of intra-species variation, inheritance, and differential survival were already abstract, 

and there is no significant increase in abstraction in the theory that combines them.   

The assembly process can be prompted. In one study, Ohlsson and Regan (2001) studied 

a laboratory version of the problem of the structure of DNA. Based on published historical 

accounts of the discovery of DNA, we extracted eight different component concepts that had to 

be combined to represent the double-helix structure. These turned out to be concepts that most 

educated adults can be expected to possess, e.g., parallel, pairwise, inverse, complement, etc.  

We found a linear relationship between the proportion of these eight concepts that were primed 

by exercises prior to problem solving and the time it took undergraduate students to solve the 

laboratory version of the DNA problem. 

The assembly process can be understood as a combination of schemas.  The key step in 

combining schemas must be to align the slots of one schema to those of another. Natural 

selection schema does not work unless the species that exhibit variation is also the species that is 

subject to selective pressure. The assembly process might share features with conceptual 

combination, although the latter process refers to single lexical concepts consisting of unfamiliar 

noun-noun or adjective-noun pairs, such as pet fish (Costello & Keane, 2000; Hampton, 1997; 

Medin & Shoben, 1988; Rips & Medin, this volume; Smith, Osherson, Rips and Keane, 1988).   

We know little about the frequency and prevalence of moves towards creating greater 

complexity at either the single concept or schema levels, and less about the conditions that 

prompt people to engage in such moves. 

 

Higher Level of Abstraction 
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The concept of abstraction, in terms of where it comes from or how it is derived, 

continues to be controversial after two millennia of scholarship.  Besides the issue of how 

abstractions are formed, there is a second, frequently overlooked meaning of moving towards 

higher abstraction: Given a pre-existing set of abstractions, it is possible to re-represent an object 

or a domain at a higher level of abstraction. For example, Chi, Feltovich and Glaser (1981) 

showed that physicists represented routine physics problems in terms of the deep principles that 

would be needed to construct a solution, whereas physics novices (those who have taken one 

course in college with an A grade), tend to represent the same problems according to their 

concrete surface components such as pulleys and inclined planes.  The point is that one and the 

same problem tends to be represented at these different levels of abstraction by two groups both 

of whom know the relevant principles. The novices in the Chi et al (1981) study knew the 

relevant principles in the sense that they could both state them and use them. However, they did 

not spontaneously represent problems in terms of those principles instead of concrete properties. 

Somewhere along the path to expertise, the physicists came to do so. 

Re-representing at a higher level of abstraction (using already acquired abstractions) is a 

very interesting dimension of change, but relevant empirical studies are scarce. As is the case 

with most other types of changes, we lack knowledge of the conditions that prompt people to 

move along this dimension and the exact nature of the relevant cognitive mechanism. 

 

Shifted Vantage Point 

Changing the level of abstraction is closely related to, but different from, the process that 

we in normal parlance call change of perspective. A classic study by R. Anderson demonstrate 

that this phrase does not merely refer to a metaphor but to a concrete psychological process. 

Anderson and Pichert (1978) gave subjects a text to read that described a home. They instructed 

subjects to take the perspective of either a burglar or a prospective home buyer. The results 
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showed that the instructions led the subjects to remember different details, even when the 

perspective taking instructions were given after the subjects had read the text.  

Shifting one’s point of view can facilitate problem solving.  For example, Hutchins and 

Levin (1981) used the occurrence of deictic verbs such as “come”, “go”, “take”, “send”, “bring”, 

and place adverbs such as “here”, “there”, “across” in think-aloud protocols to determine the 

point of view of subjects solving the Missionaries and Cannibals problem.  They found that 

problem solvers shift perspective as they solve the problem. Initially, they view the river that the 

Missionaries and Cannibals have to cross from the left bank. Later in the problem solving 

process, they view from the right bank.  One of their most interesting findings was that when 

solvers were in an impasse in the sense that they have made two non-progressive moves out of 

their current problem solving state, they could resolve the impasse if they shifted their point of 

view.  In short, the somewhat mysterious process of 'taking' a particular perspective should not 

be understood as purely metaphorical; this form of re-representation has real consequences for 

cognitive processing. 

In these cases discussed, the perspective shift was transient.  There is some evidence to 

suggest that children become more able to shift perspective as they grow older (Halford, this 

volume).   For example, Shatz and Gelman (1973) showed that young 2-year-olds could not 

adjust their speech to the age of the listener, whereas 4-year-olds did adjust their speech 

depending on whether they were speaking to another peer or an adult.  This suggests that older 

(but not younger) children are capable of shifting their perspectives to that of the listeners.  

Similarly, Piaget and Inhelder (1956) have shown that older but not younger children are capable 

of understanding what another viewer might see, when the other person views it from another 

perspective.  Although one might assume that as children mature, they acquire more knowledge 

that enables them to shift perspective, this next study confirms this interpretation since it 

manipulates knowledge directly.  We gave high school students opportunities to play with a 
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computer simulation that allows them to take different roles in a business context, such as being 

the vice president of a bank.  Students were much more able to take the perspective of the client 

after playing with the simulation, whereas they were only able to take the perspective of the bank 

before playing with the simulation (Jeong, Taylor & Chi, 2000). 

In another series of studies, we attempted to teach first-grade children about the shape of 

the Earth (Johnson, Moher, Ohlsson & Gillingham, 1999; Johnson, Moher, Ohlsson & Leigh, 

2001; Ohlsson, Moher & Johnson, 2000).  Deep understanding of this topic requires that a person 

can coordinate the normal – we call it egocentered -- perspective of a person walking around on 

the Earth with an exocentered perspective from a hypothetical (and physically unattainable) 

vantage point in space. Such perspective coordinations can be very complex. For example, 

consider sunsets. What in the egocentered perspective appears as the sun disappearing behind the 

horizon appears in the exocentered perspective as movement of the border between light and 

shadow across the surface of the Earth due to the latter's rotation. Clearly, the mapping between 

these two views of the event is far from natural, simple, or direct, and it requires considerable 

learning and instruction to develop the exocentered perspective and to link it to everyday 

perception. 

These and related studies demonstrate the occurrence of shifting vantage points and 

document the advantages they bring.  This type of change must be an important dimension of 

growth of declarative knowledge. 

 

Discussion 

We suggest that a complex body of declarative knowledge over time moves along 

multiple dimensions of change: size, connectedness, consistency, grain, complexity, abstraction, 

and vantage point. Undoubtedly there are other dimensions along which declarative knowledge 
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changes during learning as well, such as coherence, but each of these have at least some support 

in empirical studies.   

Although we separate these seven dimensions analytically for purposes of this chapter, 

we do not suggest that a cognitive change typically moves along a single dimension. Most 

complex knowledge acquisition processes will involve simultaneous movement along more than 

one dimension. For example, learning about chemistry involves thinking of material substances 

as solids, liquids, and gases instead of, e.g. iron, water, and air; this is a move towards higher 

abstraction. At the same time, the chemistry student acquires a finer grained analysis of material 

substances in terms of atoms and molecules, and a large number of previously unknown isolated 

facts about such substances, e.g., their melting points. He or she might have to assemble a new 

schema such as dynamic equilibrium, which involves shifting vantage point between the atomic 

level (where there are continuous processes) and the emergent macro level (where there is, 

nevertheless, stability). A year of high-school chemistry is likely to require movement along all 

seven of these dimensions. We suggest that this is typical in the acquisition of complex 

declarative knowledge. 

Given that a representation can change in all the ways that we have described above, 

research on the acquisition of complex declarative knowledge encounters a particular difficulty: 

How to assess the effects of different learning scenarios and training procedures.  The study of 

declarative knowledge contrasts in this respect with the study of procedural knowledge.  

Learning of procedural knowledge such as problem solving can be assessed relatively 

straightforwardly by measuring the degree to which a learner’s representation of the procedure 

approximates the correct solution procedure, in terms of the rules and strategies.  Learning of 

declarative knowledge, on the other hand, must be measured in light of the seven dimensions 

mentioned above.  This is perhaps the most important methodological problem in the study of 

complex declarative knowledge. 
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Although we understand the character of these seven dimensions relatively well, we 

know very little about what triggers people to move along one or the other dimension. What are 

the factors that trigger someone to move to a finer grain or to another level of abstraction; under 

which conditions will a learner move to an alternative vantage point?   Similarly, we do not fully 

understand the nature of the processes that bring about the changes in each dimension.  Empirical 

research has been focused on documenting the psychological reality of each type of change, and 

has not sufficiently pursued the question of triggering conditions and the processes of change. 

The seven types of changes discussed so far expand the learner's prior knowledge base in 

a monotonic way in that the prior knowledge need not be rejected or overwritten. It is possible to 

move towards larger size, denser connectedness, finer grain of representation, greater 

complexity, higher abstraction, and a different vantage point without rejecting or replacing one's 

prior knowledge representation. The one exception is a move towards increased consistency. To 

achieve increased consistency, one might have to reject or abandon some prior knowledge or 

belief. The next section discusses such non-monotonic changes.   

 

 THE LEARNING PARADOX: MONOTONIC AND NON-MONOTNIC CHANGE 

It is tempting to think of a novice as primarily lacking knowledge; the learning process is 

then naturally seen as a process of accretion: filling a void or adding information. Some of the 

other types of changes described in the previous sections, such as increased connectedness and 

moves towards finer grain of representation, also have this cumulative nature since they 

significantly extend prior knowledge.  On the other hand, several of the other types of changes, 

such as greater complexity, higher level of abstraction, and shifting vantage point, do not have 

this cumulative nature.  Rather, they go further in that they re-represent the domain rather than 

merely add to it.  However, in either the cumulative cases or the re-representation cases, the 

changes do not require that prior knowledge be rejected or replaced. For example, re-
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representing something at a higher level of abstraction does not require rejection of the prior 

representation, because abstract and concrete representations of the same thing are not mutually 

incompatible.  We can switch back and forth between conceptualizing something as a hammer 

and as a tool without any need to make a permanent choice between these two concepts.  Thus, 

in these types of re-representation process, the old and the new representation can co-exit.  

Likewise for re-representing two component concepts or schemas into a more complex concept 

or schema via assembly.  The representations for the original concepts remain.  In short, these 

types of cumulative and re-representational changes are monotonic.   

However, there are learning scenarios in which (a) the learner has a well-developed 

intuitive theory of the target domain, and (b) the subject matter to be acquired directly 

contradicts one or more of the core principles or beliefs of that intuitive theory. Successful 

learning in scenarios with these properties requires that the learner goes beyond mutually 

compatible representations. The learner has to re-represent the domain in the more fundamental 

sense of abandoning or rejecting – i. e., stop believing -- what he or she believed before, and 

replacing it with something else. We refer to this as non-monotonic change. 

Science education provides numerous examples of prior conceptions that must be 

abandoned. Research on so-called misconceptions have documented that people have complex 

and rich conceptions about domains in which they have not received explicit instruction, but for 

which everyday experience provides raw material for intuitive theory formation (Confrey, 1990).  

Research on such spontaneous science theories have focused on physics, chemistry, and biology, 

although social science and non-science domains have also been investigated (Limon, 2002). 

(The older social psychology work on belief systems focused primarily on intuitive theories of 

society and religion; see, e.g.,  Abelson et al, 1968; Rokeach, 1970.) 

Mechanics (forces and motion) is by far the most investigated domain.  The dominant 

misconception in this domain is that motion implies force (Clement, 1982; diSessa, 1983, 1988; 



 

  

28

Halloun & Hestenes, 1985; McCloskey, 1983; Minstrel, 1982).  Students assume that when an 

object is in motion, the motion is caused by a force being applied to the object, the object’s 

motion is in the direction of the force, and an object will move with constant velocity as long as 

it is under the influence of a constant force, and the velocity of an object is proportional to the 

magnitude of the applied force.  When there is no force, an object will either slow down, if it is 

moving, or remain at rest.  Motion is thus misconceived as produced by force, as opposed to the 

more accurate view that motion is a natural (i.e., equilibrium) state that will continue indefinitely 

unless some force interferes with it. Students' intuitive theory is more like the impetus theory 

held by Jean Buridan and other 14th century thinkers (Robin & Ohlsson, 1989) than like the 

inertia principle that is central to the Newtonian theory. Misconceptions about other topics, such 

as biological evolution, are also well documented (Bishop & Anderson, 1990; Brumby, 1984; 

Demasters, Settlage & Good, 1995; Ferrari & Chi, 1998; Lawson & Thompson, 1988).  

The empirical findings not only show that novices possess well-developed 

misconceptions about many domains (Reiner, Slotta, Chi & Resnick, 2000), but that these 

misconceptions persist in the face of instruction and other innovate kinds of intervention. For 

example, many science misconceptions in Newtonian mechanics are robust and remain after 

instruction, even at very selective academic institutions (DiSessa, 1982;  Caramazza, McCloskey 

& Green, 1980). With respect to mechanics, innovative instructional interventions include the 

use of carefully chosen analogies (Clement, Brown & Zietsman, 1989; Driver, 1987), 

deliberately invoking cognitive conflict  (Posner, et al, 1982), engaging in deliberate 

confrontation (Licht, 1987), or using a succession of increasingly sophisticated models (White & 

Frederiksen, 1990).  Although it is difficult to evaluate the outcomes of such interventions, it 

appears that students at best acquire the scientific conception, perhaps in an encapsulated form, 

while maintaining their initial intuitive conception (Johsua & Dupin, 1987), which is not quite 
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the intended outcome.  There are at least three reasons (presented below) why misconceptions 

are so resistant to instruction so that non-monotonic change often fails.     

  

Distortion Via Assimilation 

As was mentioned earlier,in learning, new information is typically assimilated to existing 

schemas.  Thus one reason that misconceptions persist is that when an instructor states the more 

veridical theory so that it contradicts the learner's prior misconceived knowledge, the new 

information is typically distorted in the process of being assimilated to the prior misconceived 

knowledge.  To illustrate, consider a young child who believes that the Earth is as flat as it looks 

to the unaided eye.  What happens if he or she is told that the Earth is round? Nussbaum  (1979; 

1985), Nussbaum and Novak (1976), Vosniadou (1994a, 1994b), and Vosniadou and Brewer 

(1992) have observed two intuitive schemas that we are tempted to interpret as consequences of 

distortion by assimilation. Some children draw the Earth as a flat entity with a circular periphery 

(like a pancake); others claim that the Earth is spherical but hollow and half filled with dirt (thus 

providing a flat surface for people to walk on).  In both cases, the Earth is both flat and round. 

Instruction to the effect that the Earth is round was thus assimilated to a prior flat Earth 

conception without any significant changes in the latter. 

 

 Evasion of Conflicts 

 Distortion via assimilation is most plausible when the learner is unaware of the conflict 

between his or her prior knowledge and new information. The previous example involving the 

shape of the Earth illustrates this well; the young child is not aware that he or she is interpreting 

the adjective "round" in a different way than that intended by the adult speaker. This type of 

distortion can be reliably triggered in the laboratory by deliberately creating texts that violate a 

normal reader's world view (Graesser, Kassleer, Kreuz & Mclain-Allen, 1998).  
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However, even if the conflict between prior knowledge and new information is detected, 

it does not necessarily trigger productive change processes. Social psychologists (Abelson et al, 

1968) and cognitive researchers (Chinn & Brewer, 1993; Darden 1992) have converged on very 

similar lists of potential modes of response to inconsistency. They agree that inconsistency often 

triggers evasive maneuvers that dismiss the inconsistency in some other way than by revising the 

relevant knowledge. The most basic mode of response is abeyance, that is, to postpone dealing 

with a contradiction on the grounds that not enough information is available to decide what, if 

anything, follows. One step removed from doing nothing is bolstering: The person who 

encounters information that contradicts some concept or belief X hastens to seek out supporting 

or confirming evidence that supports X. Festinger (1962/1957) and others hypothesized that the 

need to reduce an inconsistency is proportional to the ratio of supporting to contradicting pieces 

of information. Thus, by drowning the contradicting piece of information in a flood of 

confirming ones, it is possible to lower the need to resolve the contradiction, and hence to keep 

going without altering one's knowledge. Another process with a similar outcome is recalibration, 

that is, to lower the importance one attaches to the conflicting thoughts, thus making the conflict 

itself less important and easier to ignore. (A student might decide that he or she is not interested 

in science after all, so it does not matter what they teach in science courses.) These processes 

constitute evasive modes of response to inconsistent information, but they are not learning 

processes because there is no constructive change in the person's knowledge. 

 

Lack of Computational Power 

 In describing the seven dimensions of changes, we sometimes speculated on the 

processes of change.  What would happen if the inconsistent information triggered one or more 

of the learning processes that we proposed in previous sections? Take the process of creating 

greater complexity via assembly as example.  In that process, a more complex representation is 
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created by combining two or more existing representations. It is doubtful whether this process 

could lead to a new, more veridical theory. Each of the assembled representations will 

presumably be consistent with the learner's prior intuitive theory, so they will lack veridicality. 

One cannot combine two non-veridical representations to create a third, veridical representation. 

For example, learners’ naïve conception of heat and temperature, when combined, do not add up 

to the correct scientific conception of heat (Wiser & Carey, 1983), nor can teleological and 

Lamarckian ideas combine to form the principle of natural selection. 

 Although we do not spell out each argument here, a similar case could be made 

regarding the processes responsible for each of the seven types of changes discussed in the 

previous section. None of them has the computational power to create a new conception that 

goes beyond its own conceptual inputs, since, by definition, they are non-monotonic changes.  

To summarize, the mere presence of contradictory information is not sufficient to trigger 

productive cognitive change of the non-monotonic kind. A conflict between prior knowledge and 

new information might go undetected, in which case the learner might blithely assimilate the 

new information to prior knowledge, probably distorting it in the process. Even if the learner 

detects the conflict, he or she might hold the new information in abeyance rather than respond to 

it. If he or she feels a need to deal with the contradiction, there is a repertoire of evasive 

maneuvers, including bolstering and recalibration of subjective importance, that will make the 

contradiction less disturbing without any revisions in prior knowledge. Finally, the productive 

learning processes discussed previously do not have the computational power to create a new 

conception that goes beyond the conceptual inputs to those processes.  The prevalence of these 

three kinds of responses to encounters with contradictory information—distortion via 

assimilation, evading conflicts, and lacking computational power--raises the question of how can 

an intuitive theory ever be replaced?  That is, how can a truly new theory or idea, that is not an 
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extension of old theories or ideas, ever be acquired?  Bereiter (1985) referred to this as the 

learning paradox.  

 

CONCLUSIONS AND FUTURE DIRECTIONS 

Despite the prevalence of distortion via assimilation to prior knowledge, evasion of 

conflicts, and lack of computational power, non-monotonic change does happen. 

Children do replace their childhood conceptions with adult ones, some physics students do 

succeed in learning Newtonian mechanics, and scientists do sometimes replace even their most 

fundamental theories in the face of anomalous data.  Thus there must be cognitive mechanisms 

and processes that can overcome the learning paradox. A theory of complex learning should 

explain both why non-monotonic change has such low probability of occurring, and how, by 

what processes, it happens when it does happen.  

 The study of such non-cumulative learning processes is as yet in its infancy.  In this 

section, we offer a small number of speculative proposals about how non-monotonic learning 

processes can occur.  These brief proposals are intended to serve as inspiration for further 

research. 

 

Pathways to Non-Monotonic Change? 

  We describe below four mechanisms along with some empirical support. We then 

consider whether each of them can potentially achieve non-monotonic change.   

 

Transformation via Bootstrapping 

One hypothetical path to a new theory is to edit or revise one's existing theory piece by 

piece until the theory says something significantly different from what it said originally. We can 

conceptualize such a bootstrapping process as a series of local repairs of a knowledge structure. 
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Local repairs require simple mechanisms such as adding links, deleting links, reattaching links, 

and so forth. The critical condition for local repairs is that the student recognizes that the repairs 

are needed, by reflecting on the differences between his or her existing knowledge and new 

knowledge.  We have some evidence that the accumulation of local repairs can lead to a 

significant transformation of a person’s mental model of the circulatory system, from a flawed 

single-loop model to the correct double loop model (Chi, 2000). 

As a second example of bootstrapping, Thagard (1992a) analyzed the changes in the 

French chemist Lavoiser's conception of matter during the critical years of the development of 

the oxygen theory of combustion. Thagard shows how Lavoiser's conception of combustion can 

be modeled by a semantic network, and how that network is gradually transformed over several 

years as the scientist is reflecting on the outcomes of empirical experiments. By adding and 

deleting nodes and re-drawing links, Thagard depicts Lavoisier's knowledge network as 

undergoing a gradual transformation such that its initial state represents the phlogiston theory of 

combustion but its final state represents the oxygen theory.  

How much can transformation via local repairs explain? There are multiple explanations 

for why local repairs succeed in the case of the circulatory system.  One reason is that the 

transformation from a single-loop type of model to a double-loop crosses no ontological 

categories (Chi & Roscoe, 2002).  Another reason might be the relative lack of “depth” of this 

domain, in the sense that it cannot be represented by a center-periphery structure. The single-

loop principle does not deductively imply the other relevant facts about the circulatory system in 

the manner in which Newton's three laws of motion imply more peripheral statements within the 

domain of motion. The looser connection between center and periphery might make the single-

loop principle easy to tinker with. Finally, there is a question of commitment (Ohlsson, 1999). 

Although students believe that there is a single circulatory loop, this is not one of their most 

cherished beliefs and they probably do not experience it as important to their world view. 
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Tinkering even with the core principle of this domain might therefore come easier than in 

domains with a stronger center-periphery structure and deeper commitment to the core 

principles. Rokeach (1970) has presented evidence from other than scientific domains that 

knowledge elements are more resistant to change the more central they are.  It is plausible that 

transformation via bootstrapping a sequence of local repairs is less applicable the “deeper” the 

domain, at least as long as the change has to encompass the core principles to be complete.  So 

perhaps this bootstrapping process cannot be considered a true non-monotonic change 

mechanism. 

Replacement 

If stepwise revisions can only go so far to explain non-monotonic change, what 

alternative is there?  Knowledge structures can be replaced. That is, an alternative representation 

of a domain is constructed in parallel with a prior one, through processes that do not use the prior 

one as input. The old and the new representations then compete for the control of discourse and 

behavior in the course of question answering, explanation, reasoning, and problem solving. The 

new, presumably more veridical representation frequently wins, and the old one eventually fades 

from disuse. 

Bottom-Up Replacement 

Replacement can proceed either bottom-up or top-down. First, consider a new 

representation built bottom-up. This might occur when the new knowledge is encountered in a 

context that does not necessarily evoke the conflicting prior knowledge. For example, students 

might experience science instruction as so distant from everyday experience that they build 

representations of what is taught in class that are independent from, and unconnected to the 

former. The outcome of such encapsulated knowledge is an ability to solve textbook problems, 

without enriched understanding of relevant phenomena encountered in other contexts (everyday 

experience, news reports, etc.).  Due to the compartmentalization of contexts, the conflict 
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between the prior intuitive theory and the new theory is not salient to the learner, and the 

construction of the new theory can proceed without interference from prior knowledge.   

If matters remain in this state, it is doubtful whether this can be considered successful 

non-monotonic learning.  The crucial question is whether the new theory, once constructed, can 

migrate into and usurp the territory of the prior intuitive conception.  Successful non-monotonic 

learning requires that a phenomenon previously understood within the intuitive theory begins to 

be understood within the new theory instead.   

  

Top-Down Replacement 

Consider the possibility of top-down generation of a new knowledge structure. An 

abstract schema might be acquired in an alternative domain and transferred wholesale to a new 

domain. An example of this hypothetical process is provided by recent attempts to understand 

the operation of the immune system in Darwinian terms. Philosophers and theoretical biologists 

have attempted to formalize Darwin's theory of evolution (Thompson, 1989), and the resulting 

abstract schema has been applied to the question of how the immune system could produce 

antibodies for a wide variety of antigens. The Darwinian answer is that the immune system 

continually generates more or less random antibodies; high fit between antibodies and antigens 

triggers increased production of the former; thus, the antigens themselves function as an 

environment that selects for the antibodies that fight them (Gazzinga, 1992). The accuracy of this 

theory of the immune system is not the issue here. It is an example of a process in which a 

complex abstract schema was transferred as a whole to provide a cognitive template for a novel 

theory of a physiological process far removed from the evolutionary processes of speciation and 

adaptation for which the schema was originally constructed. 

This top-down process is limited in that it relies on the prior existence of an appropriate 

abstract schema, which raises the question of where abstractions come from.  This issue has 
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remained controversial for over two millennia. The standard suggestions include induction over 

exemplars (Rips & Medin, this volume) and social interaction (Greenfield, this volume).  Since 

the topic of abstraction is discussed elsewhere in this volume, we do not intend to answer this 

question here.  

Side-stepping the issue of where an abstract schema comes from in the first place, we 

first need to know whether top-down replacement is possible, given that an abstract schema 

exists. To test the feasibility of this top-down replacement process, we are instructing students 

about a domain-general abstract schema that might serve as a template for understanding 

multiple concepts in many domain.  One example is the schema of emergence (Chi, submitted), 

which has applications in biology, chemistry, and physics. It is plausible that direct instruction of 

this sort results in the de novo construction of an alternative conception, as opposed to gradual 

transformation of a prior conception. 

Transfer via Analogy 

Existence of an abstract schema may not be a necessary requisite for the top-down 

process to work.  A concrete schema from another domain might serve as template, if the two 

domains are easy enough to align so that the transfer process can operate via analogy (Holyoak, 

this volume).   In this hypothetical process, the learner acquires a schema in some source domain 

S; later, he or she is learning about some target domain T for which he or she already an intuitive 

theory.  The new information about T contradicts his or her prior intuitive theory about T, but is 

analogous to what is known about S.  If the learner creates a new representation for T based on 

what is known about S instead of building directly on his or her current intuitive theory of T, 

then he or she might avoid distortion by assimilation. 

We tested the reality of this transfer of concrete schema process in a virtual reality based 

scenario for teaching children that the Earth is round (Johnson, et al 1999; Johnson, et al 2001; 

Ohlsson, et al 2000). We created a virtual planet that was small enough so that the consequences 
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of sphericality were immediately perceivable. For example, even minor movement through the 

virtual world made objects visibly 'appear' or 'disappear' over the horizon. Having acquired a 

notion of living on a spherical planet in the context of this fictional asteroid (about which the 

children were not expected to have any distorting prior views), we then supported, via a one-on-

one dialogue, the analogical transfer of that schema to the context of the Earth. Pre- to posttest 

comparisons between the treatment and a dialogue-only control group showed that the effect of 

prior learning in the virtual environment was positive (albeit small in magnitude). We infer that 

the schema for the virtual asteroid to some extent served as template for the new conception of 

the Earth that we tried to teach them. Hence, the learning paradox was overcome by stimulating 

the children to build a representation of what life on a sphere is like independent of their prior 

knowledge of the Earth, and then encouraging the use of that representation as a template for 

building a new representation of the Earth. 

 

Ontological Shift 

Ontological categories refer to a set of categories to which people partition the world in 

terms of its most fundamental features (as opposed to characteristic and defining features; Chi, 

1997).  For example, two high level categories that people are likely to partition the different 

types of entities in the world into are substances and processes. Each type of entity is 

conceptualized as having certain fundamental properties.  For example, substances such as sand 

can be contained in a box, but processes such as a baseball game, cannot; on the other hand, 

processes can last for two hours but substances cannot.  Misconceptions are mis-categorization 

of an entity into a wrong ontological category.  For example, students typically misconceive of 

heat or electricity as a kind of stuff or substances that can move from one location to another 

(Chi, Slotta, & De Leeuw, 1994).  Continued study of some entity that is initially thought of as 

belonging to category X might reveal properties that are not consistent with its ontological status. 
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In those cases, successful learning requires that the learner re-represents the entity as belonging 

to another ontological category, such as from a kind of substance to a kind of process (Slotta, 

Chi, & Joram, 1995). 

This kind of ontological shift replaces a prior conception with a new conception in terms 

of an entity’s ontological status.  Thus, this process of ontological shift may qualify as a kind of a 

non-monotonic mechanism. 

 

Toward A Theory of Learning 

In 1965, Robert M. Gagne published a book, The Conditions of Learning, that 

summarized what was known about learning at the time. His approach was the unusual one of 

assuming that there are multiple distinct types of learning processes, distinguishable with respect 

to their prerequisites, processes, and results. He presented these in order of increasing 

complexity, beginning with "signal learning" (simple conditioning) and ending with "problem 

solving" (Gagne, 1965). The most noteworthy feature of his approach is signaled by the book's 

title: For each type of learning, Gagne asked under which conditions that type of learning might 

occur. 

In our efforts to summarize what is known about the acquisition of complex declarative 

knowledge, we, too, have been led to present a list of different types of learning. In the realm of 

monotonic learning, we distinguish between seven different dimensions of change: size, 

connectedness, consistency, grain, complexity, abstraction, and vantage point. In the realm of 

non-monotonic change, we have specified numerous non-learning modes of response to 

contradictory information such as assimilation and evasive processes of abeyance, bolstering, 

recalibration, and why many of the learning mechanisms cannot in principle produce true non-

monotonic learning. Finally, even our proposals with respect to non-monotonic learning breaks 

down into multiple processes like transformation via local repairs, bottom-up compartmentalized 
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replacement, and top-down replacement with the help of abstract schemas, transfer of concrete 

schema via analogies, and ontological shift. It seems likely that as the study of complex learning 

progresses, cognitive scientists will further our understanding of these replacement processes. 

However, as Gagne clearly saw 40 years ago, a list of learning processes is by itself an 

incomplete theory of learning. One would expect such a theory to support explanation of 

learning outcomes, to allow us to say why one subject matter is more difficult to acquire than 

another, to predict the success rate of particular instructional scenarios, and so on. However, to 

accomplish these and other theoretical tasks, we need to know when, under which circumstances, 

one or the other learning process is likely to occur.  A predictive science of complex learning 

requires that we can specify the when and wherefore of the many process hypotheses that spring 

from the imagination of the cognitive scientist. Nowhere is this more obvious than in the case of 

non-monotonic learning.  This, we suggest, is the research front in the study of complex 

declarative learning. 
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Figures 
 
 

Figure 1:  A child’s representation of 20 familiar dinosaurs (taken from Chi & Koeske, 1983). 
 
Figure 2:  A child’s representation of 20 less familiar dinosaurs (taken from Chi & Koeske,   

1983). 
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Endnotes 

 

                                                
1 In social cognition research, intuitive theories are called belief systems (Fishbein &Ajzen, 1975; 

Rokeach, 1960, 1970). Although the two constructs of intuitive theory and belief system are 

essentially identical, this connection between social and cognitive psychology has been 

overlooked on both sides (but see Schultz & Lepper, 1996). 

 

 


